[1]
Yao Kunshan, Sun Jun, Zhou Xin, et al. Nondestructive detection for egg freshness grade based on hyperspectral imaging technology [J]. Journal of Food Process Engineering, 2020, 43(7).
[2]
马本学, 喻国威, 王文霞, 等. 光谱分析在西甜瓜内部品质无损检测中的研究进展[J]. 光谱学与光谱分析, 2020, 40(7): 2035-2041.
Ma Benxue, Yu Guowei, Wang Wenxia, et al. Recent advances in spectral analysis techniques for nondestructive detection of internal quality in watermelon and muskmelon: A review [J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2035-2041.
[3]
吴启侠, 谭京红, 朱建强, 等. 花铃期受涝棉花的高光谱—光合特征及关系模型[J]. 农业工程学报, 2020, 36(6): 142-150.
Wu Qixia, Tan Jinghong, Zhu Jianqiang, et al. Hyperspectral and photosynthetic characteristics of waterlogged cotton during flowering and bollforming stages and their relationship model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 142-150.
[4]
Das P K, Laxman B, Rao S K, et al. Monitoring of bacterial leaf blight in rice using groundbased hyperspectral and LISS IV satellite data in Kurnool, Andhra Pradesh, India [J]. International Journal of Pest Management, 2015, 61(4).
[5]
Sun Jianfei, Shi Xiaojie, Zhang Hui, et al. Detection of moisture content in peanut kernels using hyperspectral imaging technology coupled with chemometrics [J]. Journal of Food Process Engineering, 2019, 42(2).
[6]
Bhadra S, Sagan V, Maimaitijiang M, et al. Quantifying leaf chlorophyll concentration of sorghum from hyperspectral data using derivative calculus and machine learning [J]. Remote Sensing, 2020, 12(13): 2082.
[7]
王延仓, 张萧誉, 金永涛, 等. 基于连续小波变换定量反演冬小麦叶片含水量研究[J]. 麦类作物学报, 2020, 40(4): 503-509.
Wang Yancang, Zhang Xiaoyu, Jin Yongtao, et al. Quantitative retrieval of water content in winter wheat leaf based on continuous wavelet transform [J]. Journal of Triticeae Crops, 2020, 40(4): 503-509.
[8]
刘燕德, 邓清, 张光伟. 高光谱技术的赣南脐橙叶片含氮量分析[J]. 中国农机化学报, 2016, 37(9): 99-103.
Liu Yande, Ding Qing, Zhang Gangwei. Analysis of nitrogen content in Gannan navel orange based on hyperspectral [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(9): 99-103.
[9]
薛龙, 蔡隽, 刘木华, 等. 基于可见近红外光谱结合不同光谱选择方法检测生姜含水率研究[J]. 中国农机化, 2012(2): 132-135.
Qiao Jianlei, Xiao Yingkui, Yu Haiye, et al. Determination of moisture content in ginger using three variable selection methods combined with Vis/NIR [J]. Chinese Agricultural Mechanization, 2012(2): 132-135.
[10]
赵阳, 成晨, 杨璐璐, 等. 高光谱的草本植物水分含量检测模型构建[J]. 光谱学与光谱分析, 2019, 39(3): 894-898.
Zhao Yang, Cheng Chen, Yang Lulu, et al. Study of the establishment of herb water content detection model based on hyperspectral technology [J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 894-898.
[11]
魏利峰, 纪建伟. 高光谱图像技术检测农作物含水量的研究进展[J]. 中国农机化学报, 2016, 37(7): 80-84.
Wei Lifeng, Ji Jianwei. Advancement of detection of crop moisture control base on hyperspectral imaging [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(7): 80-84.
[12]
刘燕德, 姜小刚, 周衍华, 等. 基于高光谱成像技术对脐橙叶片的叶绿素、水分和氮素定量分析[J]. 中国农机化学报, 2016, 37(3): 218-224.
Liu Yande, Jiang Xiaogang, Zhou Yanhua, et al. Quantitative analysis of chlorophyll, water and nitrogen for navel orange leaf based on hyperspectral imaging technology [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3): 218-224.
[13]
于雷, 朱亚星, 洪永胜, 等. 高光谱技术结合CARS算法预测土壤水分含量[J]. 农业工程学报, 2016, 32(22): 138-145.
Yu Lei, Zhu Yaxing, Hong Yongsheng, et al. Determination of soil moisture content by hyperspectral technology with CARS algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 138-145.
[14]
Sun Jun, Xin Zhou, Wu Xiaohong, et al. Identification of moisture content in tobacco plant leaves using outlier sample eliminating algorithms and hyperspectral data [J]. Biochemical and Biophysical Research Communications, 2016, 471(1): 226-232.
[15]
李江波, 赵春江, 陈立平, 等. 基于可见/近红外光谱谱区有效波长的梨品种鉴别[J]. 农业机械学报, 2013, 44(3): 153-157, 179.
Li Jiangbo, Zhao Chunjiang, Chen Liping, et al. Variety identification of pears based on effective wavelengths in visible/near infrared region [J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(3): 153-157, 179.
[16]
Licciardi G, Chanussot J. Spectral transformation based on nonlinear principal component analysis for dimensionality reduction of hyperspectral images [J]. European Journal of Remote Sensing, 2018, 51(1): 375-390.
[17]
叶珍, 白璘. 基于主成分分析与局部二值模式的高光谱图像分类[J]. 激光与光电子学进展, 2017, 54(11): 139-148.
Ye Zhen, Bai Lin. Hyperspectral image classification of based on principal component analysis and local binary patterns [J]. Laser & Optoelectronics Progress, 2017, 54(11): 139-148.
[18]
Datta A, Ghosh S, Ghosh A. Unsupervised band extraction for hyperspectral images using clustering and kernel principal component analysis [J]. International Journal of Remote Sensing, 2017, 38(3-4): 850-873.
[19]
Walczak J, Poreda T, Wojciechowski A . Effective planar cluster detection in point clouds using histogramdriven kdlike partition and shifted Mahalanobis distance based regression [J]. Remote Sensing, 2019, 11(21).
[20]
林海军, 张绘芳, 高亚琪, 等. 基于马氏距离法的荒漠树种高光谱识别[J]. 光谱学与光谱分析, 2014, 34(12): 3358-3362.
Lin Haijun, Zhang Huifang, Gao Yaqi, et al. Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species [J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3358-3362.
|