[1]
杨艳东, 贾方方, 刘新源, 等. 烤烟叶片氯密度高光谱预测模型的建立[J]. 河南农业科学, 2019, 48(5): 155-160.
Yang Yandong, Jia Fangfang, Liu Xinyuan, et al. Construction of hyperspectral prediction model for chlorine density of fluecured tobacco leaves [J]. Journal of Henan Agricultural Sciences, 2019, 48(5): 155-160.
[2]
刘良云, 靳志伟, 王纪华, 等. 光谱法预测烟叶中的烟碱、钾和氮素[J]. 烟草科技, 2005(6): 26-29.
Liu Liangyun, Jin Zhiwei, Wang Jihua, et al. Prediction of nicotine, potassium and nitrogen in tobacco with spectrometry [J]. Tobacco Science and Technology, 2005(6): 26-29.
[3]
Sun J, Xin Z, Wu X, et al. Identification of moisture content in tobacco plant leaves using outlier sample eliminating algorithms and hyperspectral data [J]. Biochem Biophys Res Commun, 2016, 471(1): 226-232.
[4]
Jia F, Liu G, Ding S, et al. Using leaf spectral reflectance to monitor the effects of shading on nicotine content in tobacco leaves [J]. Industrial Crops & Products, 2013, 51: 444-452.
[5]
邹勇, 叶晓青, 余志虹, 等. 利用冠层光谱参数监测烤烟氮素积累状况[A]. 中国烟草学会. 中国烟草学会2016年度优秀论文汇编——烟草工业主题[C]. 中国烟草学会, 2016: 11.
[6]
李梦竹, 叶红朝, 王惠等. 不同水分胁迫程度下烤烟叶片钾含量的光谱响应[J]. 中国烟草学报, 2020, 26(4): 86-92.
Li Mengzhu, Ye Hongchao, Wang Hui, et al. Spectral response of potassium content in fluecured tobacco leaves under different degree of water stress [J]. Acta Tabacaria Sinica, 2020, 26(4): 86-92.
[7]
黎瑞君, 聂克艳, 岳延滨, 等. 辣椒、水稻与烤烟叶片反射光谱特征的比较研究[J]. 西南师范大学学报(自然科学版), 2016, 41(12): 49-53.
Li Ruijun, Nie Keyan, Yue Yanbin, et al. Comparative study on leaf reflectance spectrum characteristics of pepper, rice, tobacco [J]. Journal of Southwest China Normal University (Natural Science Edition), 2016, 41(12): 49-53.
[8]
殷全玉, 杨伊檬, 靳志伟. 烟草叶片光谱特征及其光谱反射率的变化[J]. 河南科学, 2006, 24(4): 521-523.
Yin Quanyu, Yang Yimeng, Jin Zhiwei. Changes of spectral characteristics and spectral reflectivity in tobacco leaves [J]. Henan Science, 2006, 24(4): 521-523.
[9]
刘印锋. 烤烟波谱特性的分析与识别[J]. 黑龙江农业科学, 2010(3): 96-100.
Liu Yinfeng. Analysis and identification on spectrum characteristic of fluecured tobacco [J]. Heilongjiang Agricultural Sciences, 2010(3): 96-100.
[10]
郑小雨, 李常军, 路晓崇, 等. 烤烟不同成熟期色素含量变化及其与叶绿体超微结构的关系探究[J]. 中国农业科技导报, 2020, 22(10): 60-68.
Zheng Xiaoyu, Li Changjun, Lu Xiaochong, et al. Study on changes of pigment content in fluecured tobacco at different maturity stage and its relationship with chloroplast ultrastructure [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 60-68.
[11]
余志虹, 陈建军, 吕永华, 等. 利用烟叶光谱植被指数快速监测烤烟成熟度[J]. 烟草科技, 2013(2): 77-82.
Yu Zhihong, Chen Jianjun, Lü Yonghua, et al. Rapid monitoring maturity of fluecured tobacco with spectrum vegetation index of fresh leaves [J]. Tobacco Science & Technology, 2013(2): 77-82.
[12]
韩龙洋, 王一丁, 张文龙, 等. 基于高光谱技术的烤烟成熟度判别研究[J]. 延边大学农学学报, 2015, 37(4): 286-291, 301.
Han Longyang, Wang Yiding, Zhang Wenlong, et al. Research on identification of fluecured tobacco maturity grades by hyperspectral technology [J]. Journal of Agricultural Science Yanbian University, 2015, 37(4): 286-291, 301.
[13]
刘艺琳, 张海燕, 彭海根, 等. 应用近红外光谱判别烟叶等级模型的可靠性及化学成分特征分析[J]. 光谱学与光谱分析, 2020, 40(10): 3260-3264.
Liu Yilin, Zhang Haiyan, Peng Haigen, et al. Reliability and chemical composition analysis of tobacco leaf grade model by nearinf rared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 3260-3264.
[14]
于春霞, 马翔, 张晔晖, 等. 基于近红外光谱和SIMCA算法的烟叶部位相似性分析[J]. 光谱学与光谱分析, 2011, 31(4): 924-927.
Yu Chunxia, Ma Xiang, Zhang Yehui, et al. Tobacco plant parts similarity analysis based on nearinfrared spectroscopy and SIMCA algorithm [J]. Spectroscopy and Spectral Analysis, 2011, 31(4): 924-927.
[15]
周汉平, 王信民, 宋纪真, 等. 烟叶结构和油分的近红外光谱预测[J]. 烟草科技, 2006(1): 10-14, 29.
Zhou Hanping, Wang Xinmin, Song Jizhen, et al. Prediction of structure and oil of fluecured tobacco with nearinfrared reflectance [J]. Tobacco Science & Technology, 2006(1): 10-14, 29.
[16]
刘飞飞. 特征选择算法及应用综述[J]. 办公自动化, 2018, 23(21): 47-49.
Liu Feifei. A survey of feature selection algorithms and applications [J]. Office Automation, 2018, 23(21): 47-49.
[17]
陈谌, 梁雪春. 基于基尼指标和卡方检验的特征选择方法[J]. 计算机工程与设计, 2019, 40(8): 2342-2345, 2360.
Chen Chen, Liang Xuechun. Feature selection method based on Gini index and Chisquare test [J]. Computer Engineering and Design, 2019, 40(8): 2342-2345, 2360.
[18]
张扬武, 李国和, 王立梅, 等. 一种基于PCA的文本特征混合选择方法[J]. 计算机应用与软件, 2019, 36(10): 23-29, 80.
Zhang Yangwu, Li Guohe, Wang Limei, et al. A method of hybrid selection for text feature based on PCA [J]. Computer Applications and Software, 2019, 36(10): 23-29, 80.
[19]
王建峰, 乔源, 赵文杰, 等. 基于特征选择的飞灰含碳量影响因素分析[J]. 仪器仪表用户, 2020, 27(1): 85-90.
Wang Jianfeng, Qiao Yuan, Zhao Wenjie, et al. Analysis of factors affecting carbon content of fly ash based on feature selection [J]. Instrumentation Customer, 2020, 27(1): 85-90.
[20]
赵冬. 基于遗传算法的模型参数选取及其在文本分类中的应用[D]. 保定: 河北大学, 2019.
Zhao Dong. Genetic algorithm based model parameter selection and its application in text classification [D]. Baoding: Hebei University, 2019.
[21]
张昊, 陶然, 李志勇, 等. 基于自适应模拟退火遗传算法的特征选择方法[J]. 兵工学报, 2009, 30(1): 81-85.
Zhang Hao, Tao Ran, Li Zhiyong, et al. A feature selection method based on adaptive simulated annealing genetic algorithm [J]. Acta Armamentarii, 2009, 30(1): 81-85.
[22]
李占山, 刘兆赓, 俞寅, 等. 量子化信息素蚁群优化特征选择算法[J]. 东北大学学报(自然科学版), 2020, 41(1): 17-22.
Li Zhanshan, Liu Zhaogeng, Yu Yin, et al. A quantized pheromone ant colony optimization algorithm for feature selection [J]. Journal of Northeastern University (Natural Science), 2020, 41(1): 17-22.
[23]
林俊, 许露, 刘龙. 基于SVMRFEBPSO算法的特征选择方法[J]. 小型微型计算机系统, 2015, 36(8): 1865-1868.
Lin Jun, Xu Lu, Liu Long. Feature selection method based on SVMRFE and particle swarm optimization [J]. Journal of Chinese Computer Systems, 2015, 36(8): 1865-1868.
[24]
黄梅, 朱焱. 基于随机森林特征重要性的K-匿名特征优选[J]. 计算机应用与软件, 2020, 37(3): 266-270.
Huang Mei, Zhu Yan. Kanonymity feature optimization based on the importance of random forest features [J]. Computer Applications and Software, 2020, 37(3): 266-270.
|