[1] 佚名. 东方红LF954-C型无人驾驶拖拉机[J]. 农机导购, 2017(7): 69. [2] 李思勰. 极飞发布农业无人车[J]. 农业机械, 2020(1): 38-39. [3] 周俊, 胡晨. 密植果园作业机器人行间定位方法[J]. 农业机械学报, 2015, 46(11): 22-28. Zhou Jun, Hu Chen. Inter-row localization method for agricultural robot working in close planting orchard [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 22-28. [4] 张凯良, 胡勇, 杨丽, 等. 玉米收获机自动对行系统设计与试验[J]. 农业机械学报, 2020, 51(2): 103-114. Zhang Kailiang, Hu Yong, Yang Li, et al. Design and experiment of auto-follow row system for corn harvester [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 103-114. [5] Peng Y, Qu D, Zhong Y, et al. The obstacle detection and obstacle avoidance algorithm based on 2-D lidar [C]. IEEE International Conference on Information & Automation, 2015. [6] 肖宇峰, 黄鹤, 郑杰, 等. Kinect与二维激光雷达结合的机器人障碍检测[J]. 电子科技大学学报, 2018, 47(3): 337-342. Xiao Yufeng, Huang He, Zheng Jie, et al. Obstacle detection for robot based on Kinect and 2D lidar [J]. Journal of University of Electronic Science and Technology of China, 2018, 47(3): 337-342. [7] 李艳, 唐达明, 戴庆瑜. 基于多传感器信息融合的未知环境下移动机器人的地图创建[J]. 陕西科技大学学报, 2021, 39(3): 151-159. Li Yan, Tang Daming, Dai Qingyu. Map-building of mobile robot in unknown environment based on multi sensor information fusion [J]. Journal of Shaanxi University of Science & Technology, 2021, 39(3): 151-159. [8] 袁红斌, 曹会群, 欧群雍. 基于激光测距雷达和机器视觉的障碍物检测[J]. 现代雷达, 2021, 43(5): 57-62. Yuan Hongbin, Cao Huiqun, Ou Qunyong. Obstacle detection based on lidar and machine vision[J]. Modern Radar, 2021, 43(5): 57-62. [9] 张漫, 苗艳龙, 仇瑞承, 等. 基于车载三维激光雷达的玉米点云数据滤波算法[J]. 农业机械学报, 2019, 50(4): 170-178. Zhang Man, Miao Yanlong, Qiu Ruicheng, et al. Maize point cloud data filtering algorithm based on vehicle 3D lidar [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 170-178. [10] 蔡吉晨. 基于二维激光雷达的果树在线探测方法及对靶变量喷药技术研究[D]. 北京: 中国农业大学, 2018. [11] 吕宏明, 姬长英. 视觉技术在农业采摘机器人中的应用及发展[J]. 江西农业学报, 2008, 20(2): 79-80, 103. Lü Hongming, Ji Changying. Application and development of visual technology in agricultural picking robot [J]. Acta Agriculturae Jiangxi, 2008, 20(2): 79-80, 103. [12] 吕学智. 基于双目视觉的爬壁机器人环境检测技术研究[D]. 扬州: 扬州大学, 2014. [13] Ollis M, Stentz A. First results in vision-based crop line tracking [C]. IEEE International Conference on Robotics & Automation. IEEE, 1996. [14] Marchant J A, Hague T, Tillett N D. Row-following accuracy of an autonomous vision-guided agricultural vehicle [J]. Computers and electronics in agriculture, 1997, 16(2): 165-175. [15] Marchant J A, Brivot R. Real-time tracking of plant rows using a Hough transform [J]. Real-time imaging, 1995, 1(5): 363-371. [16] Søgaard H T, Olsen H J. Determination of crop rows by image analysis without segmentation [J]. Computers and Electronics in Agriculture, 2003, 38(2): 141-158. [17] Benson E R, Reid J F, Zhang Q. Machine vision-based guidance system for agricultural grain harvesters using cut-edge detection [J]. Biosystems Engineering, 2003, 86(4): 389-398. [18] Gee C, Bossu J, Jones G, et al. Crop/weed discrimination in perspective agronomic images [J]. Computers and Electronics in Agriculture, 2008, 60(1): 49-59. [19] Han S, Zhang Q, Ni B, et al. A guidance directrix approach to vision-based vehicle guidance systems [J]. Computers and electronics in Agriculture, 2004, 43(3): 179-195. [20] Tillett N D, Hague T. Computer-vision-based hoe guidance for cereals—an initial trial [J]. Journal of Agricultural Engineering Research, 1999, 74(3): 225-236. [21] Choi K H, Sang K H, Park K H, et al. Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields [J]. Computers & Electronics in Agriculture, 2015, 113: 266-274. [22] Suriyakoon S, Ruangpayoongsak N. Leading point based interrow robot guidance in corn fields [C]. International Conference on Control & Robotics Engineering. IEEE, 2017. [23] Ji R H, Qi L J. A crop-row detection algorithm based on random Hough transformation [J]. Mathematical and Computer Modelling, 2011, 54(3-4): 1016-1020. [24] Wera W, Veronika F F, Christian D, et al. Crop row detection on tiny plants with the pattern Hough transform [J]. IEEE Robotics and Automation Letters, 2018: 68-86. [25] Radcliffe J, Cox J, Bulanon D M. Machine vision for orchard navigation [J]. Computers in Industry, 2018, 98: 165-171. [26] 关卓怀, 陈科尹, 丁幼春, 等. 水稻收获作业视觉导航路径提取方法[J]. 农业机械学报, 2020, 51(1): 19-28. Guan Zhuohuai, Chen Keyin, Ding Youchun, et al. Visual navigation path extraction method in rice harvesting [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 19-28. [27] 王侨, 刘卉, 杨鹏树, 等. 基于机器视觉的农田地头边界线检测方法[J]. 农业机械学报, 2020, 51(5): 18-27. Wang Qiao, Liu Hui, Yang Pengshu, et al. Detection method of headland boundary line based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 18-27. [28] 周俊, 程嘉煜. 基于机器视觉的农业机器人运动障碍目标检测[J]. 农业机械学报, 2011, 42(8): 154-158. Zhou Jun, Cheng Jiayu. Moving obstacle detection based on machine vision for agricultural mobile robot [J]. Transactions of the Chinese Society of Agricultural Machinery, 2011, 42(8): 154-158. [29] Hosseinpoor H R, Samadzadegan F, Dadras Javan F. Pricise target geolocation based on integration of thermal video imagery and RTK-GPS in UAVS [J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-1-W5: 333-338. [30] Chiu Y C, Chen S, Lin J F. Study of an autonomous fruit picking robot system in greenhouses [J]. Engineering in Agriculture, Environment and Food, 2013, 6(3): 92-98. [31] Chiu Y C, Yang P Y, Chen S. Development of the end-effector of a picking robot for greenhouse-grown tomatoes [J]. Applied Engineering in Agriculture, 2013, 29(6): 1001-1009. [32] Chiu Y C, Chen S, Lin J F. Study of an autonomous picking robot system for greenhouse grown tomatoes [C]. Proceedings of the 6th International Symposium on Machinery and Mechatronics for Agricultural and Biosystems Engineering, 2012. [33] Chiu Y C, Chen S, Yang P Y, et al. Integrated test of an autonomous tomato picking robot [C]. Proceedings of the 7th CIGR Section VI International Technical Symposium “Innovating the Food Value Chain” Postharvest Technology and AgriFood Processing, 2012. [34] Hayashi S, Sakaue O. Basic operation of tomato harvesting system using robot: Manufacture of two-finger harvesting hand with auxiliary cutting device and basic experiment for harvest [J]. Bulletin of the National Research Institute of Vegetables Ornamental Plants & Tea, 1997(12): 133-142. [35] Yaguchi H, Nagahama K, Hasegawa T, et al. Development of an autonomous tomato harvesting robot with rotational plucking gripper [C]. IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE, 2016. [36] Kondo N, Monta M, Fujiura T. Fruit harvesting robot in Japan [J]. Advances in Space Research, 1996, 18(1-2): 181-184. [37] Kondo N, Nishitsuji Y, Ling P, et al. Visual feed back guided robotic cherry tomato harvesting [J]. Transactions of the ASAE, 1996, 39(6): 2331-2338. [38] Yasukawa S, Li B, Sonoda T, et al. Development of a tomato harvesting robot [C]. The 2017 International Conference on Artificial Life and Robotics, 2017. [39] 冯青春, 赵春江, 王晓楠, 等. 基于视觉伺服的樱桃番茄果串对靶测量方法[J]. 农业工程学报, 2015, 31(16): 206-212. Feng Qingchun, Zhao Chunjiang, Wang Xiaonan, et al. Fruit bunch measurement method for cherry tomato based on visual servo [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(16): 206-212. [40] Feng Q C, Zou W, Fan P F, et al. Design and test of robotic harvesting system for cherry tomato [J]. International Journal of Agricultural and Biological Engineering, 2018, 11(1): 96-100. [41] 吴宝山. 基于北斗/GPS双模差分定位的播种机作业状态监测系统[D]. 哈尔滨: 东北农业大学, 2018. [42] Roberson G T, Jordan D L. RTK GPS and automatic steering for peanut digging [J]. Applied Engineering in Agriculture, 2014, 30(3): 405-409. [43] 石绍军. 插秧机无人驾驶控制系统的设计与研究[D]. 泰安: 山东农业大学, 2020. [44] Choi J, Yin X, Noguchi N. Development of a laser scanner-based navigation system for a combine harvester [J]. IFAC Proceedings, 2013, 46(18): 103-108. [45] 赵腾. 基于激光扫描的联合收割机自动导航方法研究[D]. 杨凌: 西北农林科技大学, 2017. Zhao Teng. Development of automatic navigation method for combine harvester based on laser scanner [D]. Yangling: Northwest A & F University, 2017. [46] 陈枭华. 精准农业中车载定位系统的研究与设计[D]. 成都: 西南交通大学, 2018. [47] Ospina R, Noguchi N. Determination of tire dynamic properties: Application to an agricultural vehicle [J]. Engineering in Agriculture Environment & Food, 2016, 9(1): 123-130. [48] Ball D, Upcroft B, Wyeth G, et al. Vision-based obstacle detection and navigation for an agricultural robot [J]. Journal of Field Robotics, 2016, 33(8): 1107-1130.
|