[1] 周三章. 基于三维点云的农林作物三维重建方法与特征提取研究[D]. 北京: 北京林业大学, 2020.
Zhou Sanzhang. Research on 3D reconstruction method and feature extraction of agricultural and forestry crops based on 3D point cloud data [D]. Beijing: Beijing Forestry University, 2020.
[2] Steven P, Ian T, Carr E J, et al. Threedimensional virtual reconstruction of timber billets from rotary peeling [J]. Computers and Electronics in Agriculture, 2018, 152: 269-280.
[3] 张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17.
Zhang Huichun, Zhou Hongping, Zheng Jiaqiang, et al. Research progress and prospect in plant phenotyping platform and image analysis technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 1-17.
[4] Vos, Evers, J B, et al. Functionalstructural plant modelling: A new versatile tool in crop science [J]. J EXP BOT, 2010, 2010, 61(8): 2101-2115.
[5] Guo Y, Fourcaud T, Jaeger M, et al. Plant growth and architectural modelling and its applications [J]. Annals of botany, 2011, 107(5): 723-727.
[6] 边黎明, 张慧春. 表型技术在林木育种和精确林业上的应用[J]. 林业科学, 2020, 56(6): 113-126.
Bian Liming, Zhang Huichun. Application of Phenotyping Techniques in Forest Tree Breeding and Precision Forestry [J]. Scientia Silvae Sinicae, 2020, 56(6): 113-126.
[7] 郭彩玲, 刘刚. 基于三维点云的苹果树冠层点—叶模型重建方法[J]. 农业机械学报, 2020, 51(4): 173-180.
Guo Cailing, Liu Gang. Reconstruction method of apple tree canopy pointleaf model based on 3D point clouds [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 173-180.
[8] 高寒. 基于点云的大豆植株三维重建[D]. 大庆: 黑龙江八一农垦大学, 2018.
Gao Han. 3D reconstruction of soybean plant based on point cloud [D]. Daqing: Heilongjiang Bayi Agricultural University, 2018.
[9] 李书钦. 小麦生长模拟模型与三维可视化技术研究[D]. 北京: 中国农业科学院, 2017.
Li Shuqin. Research on wheat growth simulation model and 3D visualization technology [J]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
[10] Abichou M, Fournier C, Dornbusch T, et al. Paramete rising wheat leaf and tiller dynamics for faithful reconstruction of wheat plants by structural plant models [J]. Field Crops Research, 2018, 218: 213-230.
[11] 李杨先, 张慧春, 杨旸. 一种基于图像处理技术的植物形态表型参数获取方法[J]. 林业工程学报, 2020, 5(6): 128-136.
Li Yangxian, Zhang Huichun, Yang Yang. A method for obtaining plant morphological phenotypic parameters using image processing technology [J]. Journal of Forestry Engineering, 2020, 5(6): 128-136.
[12] 张慧春, 王国苏, 边黎明, 等. 基于光学相机的植物表型测量系统与时序生长模型研究[J]. 农业机械学报, 2019, 50(10): 197-207.
Zhang Huichun, Wang Guosu, Bian Liming, et al. Visible camerabased 3D phenotype measurement system and timeseries visual growth model of plant [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 197-207.
[13] 李鹏, 劳彩莲, 杨瀚, 等. 基于移动机器人平台的玉米植株三维信息采集系统[J]. 农业机械学报, 2019, 50(S1): 15-21.
Li Peng, Lao Cailian, Yang Han, et al. Maize plant 3D information acquisition system based on mobile robot platform [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 15-21.
[14] 袁晓敏, 赵春江, 温维亮, 等. 番茄植株三维形态精确重构研究[J]. 农业机械学报, 2012, 43(12): 204-210.
Yuan Xiaomin, Zhao Chunjiang, Wen Weiliang, et a1. Detailed modeling of 3-D configuration of tomato plant [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 204-210.
[15] 方慧, 胡令潮, 何任涛, 等. 植物三维信息采集方法研究[J]. 农业工程学报, 2012, 28(3): 142-147.
Fang Hui, Hu Lingchao, He Rentao, et a1. Research on plant threedimensional information acquisition method [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(3): 142-147.
[16] Khoshelham K, Elberink S O. Accuracy and resolution of Kinect depth data for indoor mapping applications [J]. Sensors, 2012, 12(2): 1437-1454.
[17] Tripicchio P, Satler M, Dabisias G, et al. Towards smart farming and sustainable agriculture with drones [C]. International Conference on Intelligent Environments. IEEE, 2015.
[18] 高寒, 李芳, 朱景福, 等. 农作物基于点云的三维重建方法研究[J]. 农业科技与信息, 2018(2): 74-76, 86.
[19] 郑立华, 麦春艳, 廖崴, 等. 基于Kinect相机的苹果树三维点云配准[J]. 农业机械学报, 2016, 47(5): 9-14.
Zheng Lihua, Mai Chunyan, Liao Wei, et a1. 3D point cloud registration for apple tree based on Kinect camera [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 9-14.
[20] 沈跃, 潘成凯, 刘慧, 等. 基于改进SIFFICP算法的Kinect植株点云配准方法[J]. 农业机械学报, 2017, 48(12): 183-189.
Shen Yue, Pan Chengkai, Liu Hui, et al. Method of plant point cloud registration based on Kinect of improved SIFTICP [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 183-189.
[21] Zhang Z. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[22] Rusu R B, Blodow N, Marton Z C, et al. Aligning point cloud views using persistent feature histograms [C]. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 22-26, 2008, Acropolis Convention Center, Nice, France. IEEE, 2008.
[23] 贾薇, 舒勤, 黄燕琴. 基于FPFH的点云特征点提取算法[J]. 计算机应用与软件, 2020, 37(7): 165-169, 245.
Jia Wei, Shu Qin, Huang Yanqin. Feature point extraction algorithm of point cloud based on FPFH [J]. Computer Applications and Software, 2020, 37(7): 165-169, 245.
[24] Rusu R B, Blodow N, Beetz M. Fast Point Feature Histograms (FPFH) for 3D registration [C]. IEEE International Conference on Robotics & Automation. IEEE, 2009.
[25] 陈学伟, 朱耀麟, 武桐, 等. 基于SACIA和改进ICP算法的点云配准技术[J]. 西安工程大学学报, 2017, 31(3): 395-401.
Chen Xuewei, Zhu Yaolin, Wu Tong, et al. The point cloud registration technology based on SACIA and improved ICP [J]. Journal of Xian Polytechnic University, 2017, 31(3): 395-401.
[26] 姚晓山, 刘健鑫, 柯维. 多视点云拼接中的 ICP 算法优化[J]. 微电子学与计算机, 2012, 29(8): 94-97.
Yao Xiaoshan, Liu Jianxin, Ke Wei. Improved ICP algorithm in multiview point clouds splicing [J]. Microelectronics & Computer, 2012, 29(8): 94-97.
[27] 王庆闪, 张军, 刘元盛, 等. 基于NDT与ICP结合的点云配准算法[J]. 计算机工程与应用, 2020, 56(7): 88-95.
Wang Qingshan, Zhang Jun, Liu Yuansheng, et al. Point cloud registration algorithm based on combination of NDT and ICP [J]. Computer Engineering and Applications, 2020, 56(7): 88-95.
[28] 朱德海. 点云库PCL学习教程[M]. 北京: 北京航空航天大学出版, 2012.
|