[1] 叶照春,陈仕红,冉海燕,等. 空心莲子草对草甘膦的敏感性测定[J]. 农药,2020,59(12):925-927.〖JP2〗Ye Zhaochun, Chen Shihong, Ran Haiyan, et al. The sensitivity of Alternanthera philoxeroides to Glyphosate [J]. Agrochemicals, 2020, 59(12): 925-927.〖JP〗
[2] 吕沐华, 丁珠玉. 基于机器视觉的果园喷药除草机器人视觉系统设计[J]. 中国农机化学报, 2021, 42(5): 42-48.
Lü Muhua, Ding Zhuyu. Design of visual systems for orchard spraying weeding robot based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(5): 42-48.
[3] 李东升, 胡文泽, 兰玉彬, 等. 深度学习在杂草识别领域的研究现状与展望[J]. 中国农机化学报, 2022, 43(9):137-144.
Li Dongsheng, Hu Wenze, Lan Yubin, et al. Research status and prospect of deep learning in weed recognition [J].Journal of Chinese Agricultural Mechanization, 2022, 43(9): 137-144.
[4] 付豪, 赵学观, 翟长远, 等. 基于深度学习的杂草识别方法研究进展[J]. 中国农机化学报, 2023, 44 (5): 198-207.
Fu Hao, Zhao Xueguan, Zhai Changyuan, et al. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44 (5): 198-207.
[5] 邢钦淞, 丁素明, 薛新宇, 等. 智能田间除草机器人发展现状研究[J]. 中国农机化学报, 2022, 43(8): 173-181.
Xing Qinsong, Ding Suming, Xue Xinyu, et al. Research on the development starts of intelligent field weeding robot [J]. Journal of Chinese Agricultural Mechanization, 2022,43(8): 173-181.
[6] 姚思雨,王磊,张宏文. 基于CNN的棉田杂草识别方法[J]. 石河子大学学报(自然科学版), 2023, 41(1):21-26.
Yao Siyu, Wang Lei, Zhang Hongwen. Weed identificationmethod in cotton field based on CNN [J]. Journal of Shihezi University (Natural Science), 2023, 41(1): 21-26.
[7] 胡炼, 刘海龙, 何杰, 等. 智能除草机器人研究现状与展望[J]. 华南农业大学学报, 2023, 44(1): 34-42.
Hu Lian, Liu Hailong, He Jie, et al. Research progress and prospect of intelligent weeding robot [J]. Journal of South China Agricultural University, 2023,44(1): 34-42.
[8] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[9] 李晓光, 付陈平, 李晓莉, 等. 面向多尺度目标检测的改进 Faster R—CNN算法[J]. 计算机辅助设计与图形学学报, 2019, 31(7): 1095-1101.
Li Xiaoguang, Fu Chenping, Li Xiaoli, et al. Improved Faster R—CNN for multi-scale object detection [J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(7): 1095-1101.
[10] Uijlings J R R, Sande K E A, Gevers T, et al. Selective search for object recognition [J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
[11] Cao C, Wang B, Zhang W, et al. An improved Faster R—CNN for small object detection [J]. IEEE Access, 2019, 7: 106838-106846.
[12] 黄书琴,黄福乐,罗柳茗,等.基于Faster R—CNN的蔗田杂草检测算法研究[J]. 中国农机化学报,2024,45(6):208-215.
Huang Shuqin, Huang Fule, Luo Liuming, et al. Research on weed detection algorithm in sugarcane field based on Faster R—CNN[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(6): 208-215.
[13] 彭明霞,夏俊芳,彭辉. 融合FPN的Faster R—CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报,2019,35(20): 202-209.
Peng Mingxia, Xia Junfang, Peng Hui. Efficient recognition of cotton and weed in field based on Faster R—CNN by integrating FPN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 202-209.
[14] 樊湘鹏,周建平,许燕,等. 基于优化Faster R—CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Identification and localization of weeds based on optimized Faster R—CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 52(5): 26-34.
[15] 李春明,逯杉婷,远松灵,等. 基于Faster R—CNN的除草机器人杂草识别算法[J]. 中国农机化学报,2019,40(12):171-176.
Li Chunming, Lu Shanting, Yuan Songling, et al. Weed identification algorithm of weeding robot based on Faster R—CNN[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 171-176.
[16] 薛金利,戴建国,赵庆展,等. 基于低空无人机影像和YOLOv3实现棉田杂草检测[J]. 石河子大学学报(自然科学版),2019, 37(1): 21-27.
Xue Jinli, Dai Jianguo, Zhao Qingzhan, et al. Cotton field weed detection based on low-altitude drone image and YOLOv3 [J]. Journal of Shihezi University (Natural Science), 2019, 37(1):21-27.
[17] 权龙哲,夏福霖,姜伟,等. 基于YOLOv4卷积神经网络的农田苗草识别研究[J]. 东北农业大学学报,2021,52(7): 89-98.
Quan Longzhe, Xia Fulin, Jiang Wei, et al. Research on recognition of maize seedlings and weeds in maize mield based on YOLOv4 convolutional neural network [J]. Journal of Northeast Agricultural University, 2021, 52(7): 89-98.
[18] 尚钰莹,张倩如,宋怀波. 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J]. 农业工程学报, 2022, 38(9): 222-229.
Shang Yuying, Zhang Qianru, Song Huaibo. Application of deep learning using YOLOv5s to apple flower detection in natural scenes [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 222-229.
[19] 孙丰刚,王云露,兰鹏,等. 基于改进YOLOv5s和迁移学习的苹果果实病害识别方法[J]. 农业工程学报. 2022,38(11): 171-179.
Sun Fenggang, Wang Yunlu, Lan Peng, et al. Identification of apple fruit diseases using improved YOLOv5s and transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 171-179.
[20] 苏宇,肖志云,鲍鹏飞. 采用改进YOLOv5s 检测牧区牲畜[J]. 农业工程学报,2023,39(24):165-176.
Su Yu, Xiao Zhiyun, Bao Pengfei. Livestock detection in pastoral areas using improved YOLOv5s [J]. Transactions of the Chinese Society of Agricultural, 2023, 39(24): 165-176.
[21] 朱圣, 邓继忠, 张亚莉, 等. 基于无人机低空遥感的水稻田间杂草分布图研究[J]. 华南农业大学学报, 2020, 41(6): 67-74.
Zhu Sheng, Deng Jizhong, Zhang Yali, et al. Study on distribution map of weeds in rice field based on UAV remote sensing [J]. Journal of South China Agricultural University, 2020, 41(6): 67-74.
[22] 邓向武,梁松,许伊杰,等. 基于Subspace集成学习的稻田杂草识别研究[J]. 广东石油化工学院学报,2021,31(4): 40-44.
Deng Xiangwu, Liang Song, Xu Yijie, et al. Weeds recognition in paddy fields based on subspace ensemble learning [J]. Journal of Guangdong University of Petrochemical Technology, 2021, 31(4): 40-44.
[23] Ge Z, Liu S, Wang F, et al. YOLOX: Exceeding YOLO series in 2021 [J]. arXiv preprint arXiv: 2107.08430, 2021.
[24] 陈禹,吴雪梅,张珍,等. 基于改进YOLOv5s的自然环境下茶叶病害识别方法[J]. 农业工程学报,2023, 39(24): 185-194.
Chen Yu, Wu Xuemei, Zhang Zhen, et al. Method for identifying tea diseases in natural environment using improved YOLOv5s [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(24): 185-194.
[25] 章权兵,胡姗姗,舒文灿,等. 基于注意力机制金字塔网络的麦穗检测方法[J]. 农业机械学报, 2021, 52(11): 253-262.
Zhang Quanbing, Hu Shanshan, Shu Wencan, et al. Wheat spikes detection method based on pyramidal network of attention mechanism [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (11): 253-262.
[26] 杜甜甜,南新元,黄家興,等. 改进RegNet识别多种农作物病害受害程度[J]. 农业工程学报,2022,38(15):150-158.
Du Tiantian, Nan Xinyuan, Huang Jiaxing, et al. Identifying the damage degree of various crop diseases using an improved RegNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 150-158.
[27] 曾安,彭杰威,刘畅,等. 基于多尺度几何感知Transformer 的植物点云补全网络[J]. 农业工程学报, 2022, 38(4):198-205.
Zeng An, Peng Jiewei, Liu Chang, et al. Plant point cloud completion network based on multi-scale geometry-aware point Transformer [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(4): 198-205.
[28] Viola P A, Jones M J. Rapid object detection using a boosted cascade of simple features [C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 2001: 511-518.
[29] 胡嘉沛,李震,黄河清,等. 采用改进YOLOv4—Tiny模型的柑橘木虱识别[J]. 农业工程学报, 2021, 37(17):197-203.
Hu Jiapei, Li Zhen, Huang Heqing, et al. Citrus psyllid detection based on improved YOLOv4—Tiny model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 197-203.
|