English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (7): 173-180.DOI: 10.13733/j.jcam.issn.2095-5553.2025.07.025

• 农业智能化研究 • 上一篇    下一篇

基于YOLOX—Nano的稻田空心莲子草目标检测方法研究

梁松1,李华锋2,邓向武1,谢新雪3,李岳鑫2,刘星晨1   

  1. (1. 广东石油化工学院电子信息工程学院,广东茂名,525000; 2. 广东茂名农林科技职业学院,
    广东茂名,525000; 3. 邯郸科技职业学院,河北邯郸,056000)
  • 出版日期:2025-07-15 发布日期:2025-07-02
  • 基金资助:
    广东省重点领域研发计划项目(2023B0202130001);2023年广东省科技创新战略专项资金(“攀登计划”专项资金)(pdjh2023b1057);广东茂名农林科技职业学院2021年校级教研科研资金资助项目(2021GMNKY10);2024年广东石油化工学院大学生创新创业培育计划项目(24C153);2023年茂名市科技计划项目(2023005)

Research on target detection method of Alternanthera philoxeroides in rice seedling stage based on YOLOX—Nano

Liang Song1, Li Huafeng2, Deng Xiangwu1, Xie Xinxue3, Li Yuexin2, Liu Xingchen1   

  1. (1. College of Electronic Information Engineering, Guangdong University of Petrochemical Technology, Maoming, 
    525000, China; 2. Guangdong Maoming Agriculture & Forestry Technical College, Maoming, 525000, China; 
    3. Handan Vocational College of Science and Technology, Handan, 056000, China)
  • Online:2025-07-15 Published:2025-07-02

摘要: 稻田空心莲子草为稻田外来入侵恶性杂草,在秧苗封行前与水稻幼苗共同竞争水、肥、光和生长空间等资源,进而影响水稻产量。目前主要采用化学喷施除草剂对草害进行防治,如果在稻田无差别地喷施化学除草剂,不仅污染环境,还对稻田秧苗产生一定的药害。随着深度学习的快速发展,根据稻田杂草的区域位置进行除草剂精准喷施已成为可能。YOLO系列具有高效推理能力及快速迭代的特点,系列版本体积小,方便嵌入手机或其他终端产品。以秧苗未封行前稻田中的恶性杂草空心莲子草为研究对象,针对YOLOX一阶段目标检测模型系列,YOLOX—Nano虽然在YOLOX系列中性能不是最优,但是其在YOLOX几个版本中体积最小,方便嵌入手机或其他终端产品,最终选择YOLOX系列中的YOLOX—Nano模型。同时构建YOLOv3、YOLOv4—tiny、YOLOv5—s、SSD和YOLOX—Nano等空心莲子草目标检测模型,并进行性能实验对比。结果表明,基于YOLOX—Nano的空心莲子草目标检测模型中召回率Recall、mAP、F1值都高于YOLOv3、YOLOv4—tiny、SSD和YOLOv5—s模型,分别达到97.14%、96.72%和93%。针对秧苗和空心莲子草之间不同程度的轻微遮挡和部分严重遮挡图像,基于YOLOX—Nano的空心莲子草目标检测模型检测效果好于YOLOv3、YOLOv4—tiny、SSD和YOLOv5—s。

关键词: 空心莲子草, 稻田, 目标检测, 除草, YOLOX—Nano

Abstract: Alternanthera philoxeroides is an alien invasive malignant weed in rice fields, which competes with rice seedlings for water, fertilizer, light and growth space before seedling closure, thus seriously affecting rice yield. At present, chemical herbicides are mainly used to control weeds. If indiscriminate spraying of chemical herbicides is used in rice fields, it will not only polluting the environment but also causing certain phytotoxicity to rice seedlings. With the rapid development of artificial intelligence and deep learning, it is possible to precisely spray herbicides according to the regional location of weeds in rice fields. Due to the efficient reasoning ability and fast iteration of the YOLO series with one-stage target detection models, the series version has become smaller in size and can be easily embedded in mobile phones or other terminal products. This article focuses on the malignant weed hollow lotus seed grass in paddy fields before the seedlings are sealed off, and the YOLOX series are established. The performance of YOLOX Nano in the YOLOX series is not optimal. Due to its smallest size among several versions of YOLOX, which could be easily embedded into mobile phones or other terminal products, the YOLOX Nano model in the YOLOX series was ultimately chosen. The YOLOv3, YOLOv4—tiny, YOLOv5—s, SSD, and YOLOX—Nano target detection networks were constructed and their performance were compared. The experimental results showed that the Recall, mAP and F1 values of the YOLOX—Nano based target detection model of Alternanthera philoxeroides were higher than those of the YOLOv3, YOLOv4—tiny, SSD, and YOLOv5—s, reaching 97.14%, 96.72% and 93%, respectively. Aiming at the slight occlusion and partially severe occlusion image between seedlings and Alternanthera philoxeroides, the detection effect of Alternanthera philoxeroides target detection model based on YOLOX—Nano is better than that of YOLOv3, YOLOv4—tiny, SSD, and YOLOv5—s.

Key words: Alternanthera philoxeroides, paddy field, object detection, weed, YOLOX—Nano

中图分类号: