English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (7): 164-172.DOI: 10.13733/j.jcam.issn.2095-5553.2025.07.024

• 农业智能化研究 • 上一篇    下一篇

融合蚁群算法和差分Transformer的农业机器人路径规划研究

李娟1,张振荣2   

  1. (1. 四川托普信息技术职业学院,成都市,611743; 2. 四川农业大学信息工程学院,四川雅安,625014)
  • 出版日期:2025-07-15 发布日期:2025-07-02
  • 基金资助:
    国家自然科学基金(61972362)

Path planning for agricultural robots using ant colony algorithm and differential Transformer

Li Juan1, Zhang Zhenrong2   

  1. (1. Sichuan Top IT Vocational Institute, Chengdu, 611743, China; 2. College of Information Engineering, 
    Sichuan Agricultural University, Yaan, 625014, China)
  • Online:2025-07-15 Published:2025-07-02

摘要: 针对农业机器人在复杂田间环境中路径规划精度不足、避障能力有限的问题,提出一种融合蚁群算法和差分Transformer的新型路径规划方法。采用蚁群算法进行初始全局路径搜索,利用其分布式并行搜索能力生成初始可行路径。针对传统蚁群算法中信息素更新方式容易陷入局部最优、对环境动态变化适应性差的缺陷,设计差分Transformer模型替代原有的信息素更新方法。差分Transformer通过自注意力机制,捕捉路径节点之间的长距离依赖关系和非线性特征,对信息素进行更精准地更新和分配,增强算法对复杂环境的适应能力。实验结果表明,所提出的方法在路径长度、规划时间和避障成功率等指标上均优于传统算法。具体而言,与蚁群算法相比,区域规模为50时,路径长度平均减少16.8%,从平均150m降至125 m;规划时间缩短23.5%,从平均2.13 s降至1.63 s;避障成功率提高11.2%,达到96.5%。该研究为农业机器人自主导航提供有效的解决方案,具有重要的理论意义和应用价值。

关键词: 农业机器人, 路径规划, 蚁群算法, 差分 Transformer, 智慧农业

Abstract: To address the challenges of low path planning accuracy and limited obstacle avoidance capabilities of agricultural robots operating in complex field environments, this study proposes a novel path planning method that combines the Ant Colony Algorithm (ACA) with a differential Transformer. Initially, the ACA is for global path search, leveraging its distributed and parallel search capabilities to generate an initial feasible path. To overcome the traditional ACAs limitations, such as susceptibility to local optimization and poor adaptability to dynamic changes of the environment, a differential Transformer model was introduced to replace the conventional pheromone updating mechanism. By utilizing a self-attention mechanism, the differential Transformer captures long-range dependencies and nonlinear features between path nodes, thereby allowing for more precise pheromone updates and better adaptability in complex conditions. Experimental results showed that the proposed method outperforms traditional algorithms in terms of path length, planning time, and obstacle avoidance success rate. Specifically, in an environment with a grid size of 50, the average path length was reduced by 16.8%, from 150 meters to 125 meters. Planning time was shortened by 23.5%, from 2.13 seconds to 1.63 seconds.The obstacle avoidance success rate increased by 11.2%, reaching 96.5%. This research provides an effective solution for autonomous navigation in agricultural robotics and holds significant theoretical and practical value.

Key words: agricultural robot, path planning, ant colony algorithm, differential Transformer, smart agriculture

中图分类号: