[1] 王宁,韩雨晓,王雅萱,等.农业机器人全覆盖作业规划研究进展[J].农业机械学报,2022,53(S1):1-19.
Wang Ning, Han Yuxiao, Wang Yaxuan, et al. Progress in research on fully coverage operation planning for agricultural robots [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1):1-19.
[2] Chakraborty S, Elangovan D, Govindarajan P L, et al. A comprehensive review of path planning for agricultural ground robots [J]. Sustainability, 2022, 14(15): 9156.
[3] 邓文乾,赖颖杰,张世昂,等.面向农田环境的农业多机器人协同技术研究进展[J].中国农机化学报,2024,45(10):289-297.
Deng Wenqian, Lai Yingjie, Zhang Shiang, et al. Progress in research on cooperative technologies for multiple agricultural robots in farmland environments [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(10):289-297.
[4] 潘忠英,尚猛.改进麻雀算法和A*算法的农业机器人路径规划[J].机械设计与研究,2022,38(1):31-37.
Pan Zhongying, Shang Meng. Path planning for agricultural robots using improved sparrow algorithm and A* algorithm [J]. Mechanical Design and Research, 2022, 38(1):31-37.
[5] 郑路,张啸,王建国,等.基于宏微结合的田间作业机器人路径规划[J].农业机械学报,2023,54(9):13-26.
Zheng Lu, Zhang Xiao, Wang Jianguo, et al. Path planning for field operation robots based on macro-micro integration [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(9):13-26.
[6] 王红君, 叶荣, 赵辉, 等. 基于改进的烟花—蚁群算法和B样条曲线的农业机器人路径规划[J]. 科学技术与工程, 2021, 21(7): 2730-2736.Wang Hongjun, Ye Rong, Zhao Hui, et al. Path planning for agricultural robots based on improved firework-ant colony algorithm and B-spline curves [J]. Science, Technology and Engineering, 2021, 21(7):2730-2736.
[7] 毕泗兴,宫金良,张彦斐.基于改进A*与DWA算法的农业机器人路径规划[J].山东理工大学学报(自然科学版),2024,38(5):40-46.
Bi Sixing, Gong Jinliang, Zhang Yanfei. Path planning for agricultural robots based on improved A* and DWA algorithms [J]. Journal of Shandong University of Technology (Natural Science Edition), 2024, 38(5):40-46.
[8] 杨松,洪涛,朱良宽.改进蚁群算法的森林防火移动机器人路径规划[J].森林工程,2024,40(1):152-159.Yang Song, Hong Tao, Zhu Liangkuan. Path planning for forest fire fighting mobile robots using improved ant colony algorithm [J]. Forest Engineering, 2024, 40(1):152-159.
[9] 时维国, 宁宁, 宋存利, 等. 基于蚁群算法与人工势场法的移动机器人路径规划[J]. 农业机械学报, 2023, 54(12): 407-416.
Shi Weiguo, Ning Ning, Song Cunli, et al. Path planning for mobile robots based on ant colony algorithm and artificial potential field method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12):407-416.
[10] 李文峰,徐蕾,杨琳琳,等. 基于改进蚁群算法的农业机器人多田块路径规划方法与试验[J]. 南京农业大学学报, 2024, 47(4): 823-834.
Li Wenfeng, Xu Lei, Yang Linlin, et al. Multi-field path planning methods and experiments for agricultural robots based on improved ant colony algorithm [J]. Journal of Nanjing Agricultural University, 2024, 47(4): 823-834.
[11] Chen L, Wang Y, Miao Z, et al. Transformer-based imitative reinforcement learning for multirobot path planning [J]. IEEE Transactions on Industrial Informatics, 2023, 19(10): 10233-10243.
[12] Zhang T, Fan J, Zhou N, et al. Highlyself-adaptive path-planning method for unmanned ground vehicle based on transformer encoder feature extraction and incremental reinforcement learning [J]. Machines, 2024, 12(5): 289.
[13] Lee K, Im E, Cho K. Mission-conditioned path planning with transformer variational autoencoder [J]. Electronics, 2024, 13(13): 2437.
[14] 李娟, 金志雄. 基于轻量化Transformer的农作物检测机器人路径规划[J]. 中国农机化学报, 2024, 45(9): 227-233.
Li Juan, Jin Zhixiong. Path planning for crop detection robots based on lightweight transformer [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(9):227-233.
[15] 石志刚, 梅松, 邵毅帆, 等. 基于人工势场法的移动机器人路径规划研究现状与展望[J]. 中国农机化学报, 2021, 42(12): 182-188.
Shi Zhigang, Mei Song, Shao Yifan, et al. Current status and prospects of path planning for mobile robots based on artificial potential field method [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12):182-188.
[16] 王建玲, 王换换. 增强蚁群算法在移动机器人路径规划的应用研究[J]. 机床与液压, 2024, 52(10): 70-77.Wang Jianling, Wang Huahuan. Application research of enhanced ant colony algorithm in path planning for mobile robots [J]. Machine Tools and Hydraulics, 2024, 52(10):70-77.
[17] 朱敏, 胡若海, 卞京. 基于改进蚁群算法的移动机器人路径规划[J]. 现代制造工程, 2024, 1(3): 38-44.Zhu Min, Hu Ruohai, Bian Jing. Path planning for mobile robots based on improved ant colony algorithm [J]. Modern Manufacturing Engineering, 2024, 1(3): 38-44.
[18] 张万枝, 赵威, 李玉华, 等. 基于改进A*算法+LM—BZS算法的农业机器人路径规划[J]. 农业机械学报, 2024, 55(8): 81-92.
Zhang Wanzhi, Zhao Wei, Li Yuhua, et al. Path planning for agricultural robots based on improved A* algorithm + LM—BZS algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(8): 81-92.
[19] 张亚莉, 莫振杰, 田昊鑫, 等. 基于改进APF—FMT*的农业机器人路径规划算法[J]. 华南农业大学学报, 2024, 45(3): 408-415.
Zhang Yali, Mo Zhenjie, Tian Haoxin, et al. Path planning algorithm for agricultural robots based on improved APF—FMT* [J]. Journal of South China Agricultural University, 2024, 45(3): 408-415.
[20] Pour Arab D, Spisser M, Essert C. Complete coverage path planning for wheeled agricultural robots [J]. Journal of Field Robotics, 2023, 40(6): 1460-1503.
[21] Zhao Z, Liu S, Wei J, et al. Improved biological neural network approach for path planning of differential drive agricultural robots with arbitrary shape [J]. Computers and Electronics in Agriculture, 2024, 216(1): 108525.
|