English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (4): 120-125.DOI: 10.13733/j.jcam.issn.2095-5553.2025.04.018

• 农业智能化研究 • 上一篇    下一篇

基于轻量化YOLO模型的花椒簇检测研究

丁展博,徐健,朱耀麟,张勇进,刘晨雨   

  1. (西安工程大学电子信息学院,西安市,710048)
  • 出版日期:2025-04-15 发布日期:2025-04-18
  • 基金资助:
    陕西省科技厅自然科学基金重点项目(2023—JC—ZD—33)

Research on prickly ash cluster detection based on lightweight YOLO model

Ding Zhanbo, Xu Jian, Zhu Yaolin, Zhang Yongjin, Liu Chenyu   

  1. (School of Electronics and Information, Xi'an Polytechnic University, Xi'an, 710048, China)
  • Online:2025-04-15 Published:2025-04-18

摘要: 花椒簇的自动化采摘是实现花椒智能化生产、降低生产成本的重要部分,花椒簇在自动化采摘时快速准确检测是其重要前提。以花椒簇为研究对象,提出一种基于YOLOv5s的轻量化花椒簇检测模型GGL—YOLO。首先,在GhostNet浅层添加SE注意力机制,并且删除GhostNet较深的冗余层,用优化后的GhostNet作为YOLOv5s的主干;其次,在模型的颈部采用更加轻量的GSConv卷积方法和C2f模块;最后,在P3、P4、P5特征图输出层使用动态感受野的方法。结果表明,GGL—YOLO模型相比于YOLOv5s模型,平均精确度均值mAP提升1.5%、参数量降低58.6%、浮点运算数FLOPs降低66.7%,检测速度提高13.2%。该模型对花椒簇检测准确度高、速度快、参数量低,具有可行性。

关键词: 花椒簇, 目标检测, YOLOv5, 轻量化, 深度学习

Abstract: The automation of prickly ash cluster harvesting is a crucial step towards achieving intelligent production of prickly ash and reducing production costs. Accurate and efficient detection of prickly ash clustersis an important prerequisite for automated harvesting systems. This study introduces a lightweight prickly ash cluster detection model, GGL—YOLO, based on YOLOv5s, specifically designed for this task. The model incorporates several enhancements. First, the SE attention mechanism is integrated into the shallow layers of GhostNet, while its redundant deeper layers are removed, resulting in an optimized GhostNet serving as the YOLOv5s backbone. Second, the neck of the model is improved by introducing a lighter GSConv convolution method and the C2f module. Finally, a dynamic receptive field is applied to the P3, P4, and P5 feature map outputs. Experimental results show that, compared tothe YOLOv5s model, the GGL—YOLO model achieved a 1.5% increase in the mean average precision(mAP), a 58.6% reduction in parameter volume, a 66.7% reduction in FLOPs, and a 13.2% increase in detection speed. These results confirm that the GGL—YOLO model offers a feasible solution for the fast and accurate detection of prickly ash clusters, thereby advancing the automation of their harvesting process.

Key words:  , prickly ash cluster, object detection, YOLOv5, lightweight, deep learning

中图分类号: