[1] 张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59.
Zhang Dongyan, Lan Yubin, Chen Liping, et al. Current status and future trends of agricultural aerial spraying technology in China [J].Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 53-59.
[2] Xiongkui H, Bonds J, Herbst A, et al. Recent development of unmanned aerial vehicle for plant protection in East Asia [J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 18-30.
[3] 周志艳, 臧英, 罗锡文, 等. 中国农业航空植保产业技术创新发展战略[J]. 农业工程学报, 2013, 29(24): 1-10.
Zhou Zhiyan, Zang Ying, Luo Xiwen, et al. Technology innovation development strategy on agricultural aviation industry for plant protection in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 1-10.
[4] Bradley K F, Hoffmann W C, Bagley W E, et al. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems [J]. Journal of ASTM International, 2011, 8(5): 1-11.
[5] 朱姜蓬, 岑海燕, 何立文, 等. 农情监测多旋翼无人机系统开发及性能评估[J]. 智慧农业, 2019, 1(1): 43-52.
Zhu Jiangpeng, Cen Haiyan, He Liwen, et al. Development and performance evaluation of a multirotorunmanned aircraft system for agricultural monitoring [J]. Smart Agriculture, 2019, 1(1): 43-52.
[6] 胡鹏程. 基于无人机近感的高通量田间作物几何表型研究[D]. 北京: 中国农业大学, 2018.
Hu Pengcheng. Highthroughput field morphological phenotyping using UAVbased proximal sensing [D]. Beijing: China Agricultural University, 2018.
[7] 周志艳, 明锐, 臧禹, 等. 中国农业航空发展现状及对策建议[J]. 农业工程学报, 2017, 33(20): 1-13.
Zhou Zhiyan, Ming Rui, Zang Yu, et al. Development status and countermeasures of agricultural aviation in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 1-13.
[8] 张京, 何雄奎, 宋坚利, 等. 无人驾驶直升机航空喷雾参数对雾滴沉积的影响[J]. 农业机械学报, 2012, 43(12): 94-96.
Zhang Jing, He Xiongkui, Song Jianli, et al. Influence of spraying parameters of unmanned aircraft ondroplets deposition [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 94-96.
[9] 杨知伦, 葛鲁振, 祁力钧, 等. 植保无人机旋翼下洗气流对喷幅的影响研究[J]. 农业机械学报, 2018, 49(1): 116-122.
Yang Zhilun, Ge Luzhen, Qi Lijun, et al. Influence of UAV rotor downwash airflow on spray width [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 116-122.
[10] 王昌陵, 何雄奎, Jane Bonds, 等. 不同飞行参数下八旋翼植保无人机下洗流场对雾滴沉积分布特性的影响[J]. 智慧农业(中英文), 2020, 2(4): 124-136.
Wang Changling, He Xiongkui, Jane Bonds, et al. Effect of downwash airflow field of 8rotor unmannedaerial vehicle on spray deposition distributioncharacteristics under different flight parameters [J]. Smart Agriculture, 2020, 2(4): 124-136.
[11] Qiang Shi, Hanping Mao, Xianping Guan. Numerical simulation and experimental verification of the deposition concentration of an unmanned aerial vehicle [J]. Applied Engineering in Agriculture, 2019, 35(3): 367-376.
[12] 文晟, 韩杰, 兰玉彬, 等. 单旋翼植保无人机翼尖涡流对雾滴飘移的影响[J]. 农业机械学报, 2018, 49(8): 127-160.
Wen Sheng, Han Jie, Lan Yubin, et al. Influence of wing tip vortex on drift of single rotor plantprotection unmanned aerial vehicle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 127-160.
[13] Tang Q, Zhang R, Ding C, et al. Application of ultrasonic anemometer array to field measurements of the downwash flow of an agricultural unmanned helicopter [J]. Transactions of the ASABE, 2019, 62(5): 1219-1230.
[14] Wu Y, Qi L, Zhang H, et al. Design of UAV downwash airflow field detection system based on strain effect principle [J]. Sensors, 2019, 19(11): 2630.
[15] Xuesong B, Dafsari R A, Lee J. Downwash flow measurement of the rotor blade for an agricultural spraying drone [J]. ?儐??剟d?儔??冦r?剟a?劉h?劰F?劰B?剟a?剰*?儐??劉h, 2019: 377-379.
[16] Tang Q, Zhang R, Chen L, et al. Highaccuracy, highresolution downwash flow field measurements of an unmanned helicopter for precision agriculture [J]. Computers and Electronics in Agriculture, 2020, 173: 105390.
[17] Ramasamy M, Johnson B, Huismann T, et al. Digital particle image velocimetry measurements of tip vortex characteristics using an improved aperiodicity correction [J]. Journal of the American Helicopter Society, 2009, 54(1): 1-13.
[18] Tang Q, Zhang R, Chen L, et al. Numerical simulation of the downwash flow field and droplet movement from an unmanned helicopter for crop spraying [J]. Computers and electronics in agriculture, 2020, 174: 105468.
[19] Zhang H, Qi L, Wu Y, et al. Numerical simulation of airflow field from a sixrotor plant protection drone using lattice Boltzmann method [J]. Biosystems Engineering, 2020, 197: 336-351.
[20] Tang Q, Chen L, Zhang R, et al. Effects of application height and crosswind on the crop spraying performance of unmanned helicopters [J]. Computers and Electronics in Agriculture, 2021, 181: 105961.
[21] McNamara G R, Zanetti G. Use of the Boltzmann equation to simulate latticegas automata [J]. Physical review letters, 1988, 61(20): 2332.
[22] Shangguan Y, Wang X, Li Y. Largescaled simulation on the coherent vortex evolution of a jet in a crossflow based onlattice Boltzmann method [J]. Thermal Science, 2015, 19(3): 977-988.
[23] Alkshaish J A, Esfahani J A. Lattice Boltzmann simulation of turbulent natural convection: enclosure heated from below [J]. Journal of Thermophysics & Heat Transfer, 2017, 31(4): 1-10.
[24] 田志伟, 薛新宇, 徐阳, 等. 植保无人机下洗气流对作物冠层作用规律研究[J]. 农业机械学报, 2021, 52(1): 40-48.
Tian Zhiwei, Xue Xinyu, Xu Yang, et al. Effect of plant protection UAVs downwash on crop canopy [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 40-48.
[25] 李继宇, 周志艳, 胡炼, 等. 单旋翼电动无人直升机辅助授粉作业参数优选[J]. 农业工程学报, 2014, 30(10): 10-17.
Li Jiyu, Zhou Zhiyan, Hu Lian, et al. Optimization of operation parameters for supplementary pollination in hybrid rice breeding using uniaxial singlerotor electric unmanned helicopter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 10-17.
[26] 王潇楠, 何雄奎, 王昌陵, 等. 油动单旋翼植保无人机雾滴飘移分布特性[J]. 农业工程学报, 2017, 33(1): 117-123.
Wang Xiaonan, He Xiongkui, Wang Changling, et al. Spray drift characteristics of fuel powered singlerotor UAV for plant protection [J]. Transactions of the Chinese Society of Agricultural Engineering. 2017, 33(1): 117-123.
[27] Tang Q, Zhang R, Chen L, et al. Highaccuracy, highresolution downwash flow field measurements of an unmanned helicopter for precision agriculture[J]. Computers and Electronics in Agriculture, 2020, 173: 105390.
[28] 杨知伦, 葛鲁振, 祁力钧, 等. 植保无人机旋翼下洗气流对喷幅的影响研究[J]. 农业机械学报, 2018, 49(1): 116-122.
Yang Zhilun,Ge Luzhen, Qi Lijun, et al. Influence of UAV rotor downwash airflow on spray width [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 116-122.
|