English

中国农机化学报

中国农机化学报 ›› 2022, Vol. 43 ›› Issue (5): 71-76.DOI: 10.13733/j.jcam.issn.20955553.2022.05.011

• • 上一篇    下一篇

基于机器视觉技术的棉籽破损检测

刘媛杰,张泽亮,张洪洲,李勇,李伟强   

  1. 塔里木大学机械电气化工程学院,新疆阿拉尔,843300
  • 出版日期:2022-05-15 发布日期:2022-05-17
  • 基金资助:
    国家自然基金项目(61701334);新疆生产建设兵团南疆重点领域科技支撑计划项目(2018DB001);华中农业大学—塔里木大学联合基金项目(HNLH202002);中国农业大学—塔里木大学联合基金项目(TDZNLH201703)

Detection of cottonseed damage based on machine vision technology

Liu Yuanjie, Zhang Zeliang, Zhang Hongzhou, Li Yong, Li Weiqiang.   

  • Online:2022-05-15 Published:2022-05-17

摘要: 种子质量对增产丰收具有十分重要的意义。提出一种基于机器视觉提取单粒棉籽,自动识别破损棉籽的方法。试验用最大类间法自动选择阈值结合膨胀处理和区域属性度量函数提取单粒棉籽图像;基于改进阈值的小波去噪对图像进行增强;通过对多幅单粒棉籽图像的研究找到对破损区域进行阈值分割的最佳阈值,对整个棉籽进行阈值分割的最佳阈值;进而对分割后的图像进行相乘和数学形态学处理等方法得到破损区域特征;最后利用获取连通区域的方法实现破损棉籽的识别并将此方法用Matlab App Designer设计成软件。试验表明,此系统对破损棉籽的平均准确率达到89%。优于软阈值函数、硬阈值函数和软硬阈值折衷函数的平均准确率83.5%、85%和87.5%。

关键词: 脱绒棉籽, 机器视觉, 小波去噪, 破损检测

Abstract:  Seed quality is of great significance for increasing yield and harvest. Therefore, this paper proposes a method of extracting single cotton seed and automatically identifying damaged cotton seed based on machine vision.In this study, the maximum class method was used to automatically select the threshold value. The expansion processing and the region attribute measurement function was also used to extract the single cottonseed image. Wavelet denoising based on improved threshold was used to enhance the image. Through the study of numerous singlegrain cottonseed images, the optimal threshold for segmenting the damaged and the whole cottonseed was found. The damaged area features were obtained by multiplying the segmented images and morphological processing. Finally, the damaged cottonseeds were identified using the method of obtaining the connected region designed into a software with Matlab App Designer.The average accuracy of this system to damaged cottonseed was 89%, which was better than soft threshold function, hard threshold function and softhard threshold compromise function with average accuracy of 83.5%, 85% and 87.5%, respectively.

Key words:  cashmere cottonseed, machine vision, wavelet denoising, damage detection

中图分类号: