[1] 王祎娜, 沐森林, 顾峰伟, 等. 国内外农机化技术发展现状与对策建议[J]. 中国农机化学报, 2019, 40(3): 227-230.
Wang Yina, Mu Senlin, Gu Fengwei, et al. Current situation and suggestions for the development of agricultural mechanization technology at home and abroad [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(3): 227-230.
[2] 方师乐, 黄祖辉. 新中国成立70年来我国农业机械化的阶段性演变与发展趋势[J]. 农业经济问题, 2019(10): 36-49.
Fang Shile, Huang Zuhui. 70th anniversary of the founding of the PRC: The transition, influence factor and trend of Chinas agricultural mechanization [J]. Issues in Agricultural Economy, 2019(10): 36-49.
[3] 郭明伟, 温辉芹, 裴自友, 等. 山西省农业机械化水平发展状况分析[J]. 农业与技术, 2020, 40(8): 56-59.
[4] 贺孝兵. 浅谈山西省丘陵山区农机化发展现状及其对策[J]. 农业技术与装备, 2017(9): 58-60.
He Xiaobing. Present situation and countermeasures of agricultural mechanization development in hilly areas [J]. Agricultural Technology & Equipment, 2017(9): 58-60.
[5] 鞠金艳. 黑龙江省农业机械化发展的系统分析与对策研究[D]. 哈尔滨: 东北农业大学, 2011.
Ju Jinyan.System analysis and countermeasures study on the development of agricultural mechanization in Heilongjiang Province [D]. Harbin: Northeast Agricultural University, 2011.
[6] Jaso K B, Andrew W D, Paul W S. How smartIT systems are revolutionizing agriculture [J]. Agriculture and Information Technology, 2011, 1(3): 14-21.
[7] Garibaldi L A, Aizen M A, Klein A M, et al. Global growth and stability of agricultural yield decrease with pollinator dependence [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5909-5914.
[8] Hudzari R M. Information simulation and modeling application in agricultural mechanization [J]. Modeling and Simulation in Engineering, 2012(11): 5-7.
[9] 张永礼, 陆刚, 武建章. 基于MIV和GABP模型的农业机械化水平影响因素实证分析[J]. 农业现代化研究, 2016, 37(1): 1026-1031.
Zhang Yongli, Lu Gang, Wu Jianzhang. The empirical analysis on the influencing factors of agricultural mechanization level based on MIV and GABP neural network model [J]. Research of Agricultural Modernization, 2016, 37(1): 1026-1031.
[10] 姚成胜, 何永波, 曹紫怡. 中国主粮生产机械化水平的时空演变及其驱动机制[J]. 中国农业大学学报, 2021, 26(5): 208-220.
Yao Chengsheng, He Yongbo, Cao Ziyi. Spatialtemporal evolution and driving mechanism of mechanization level of staple food grain production in China [J]. Journal of China Agricultural University, 2021, 26(5): 208-220.
[11] 刘玉梅, 田志宏. 农户收入水平对农机装备需求的影响分析——以河北省和山东省为例[J]. 中国农村经济, 2009(12): 44-55.
[12] 潘彪, 田志宏. 购机补贴政策对中国农业机械使用效率的影响分析[J]. 中国农村经济, 2018(6): 21-37.
Pan Biao, Tian Zhihong. The impacts of agricultural machinery purchase subsidy policies on the utilization efficiency of agricultural machinery in China [J]. Chinese Rural Economy, 2018(6): 21-37.
[13] 谭文芳. 湖南省农业机械化现状及预测模型研究[D]. 长沙: 中南林业科技大学, 2015.
Tan Wenfang. Research on agricultural mechanization development and prediction model in Hunan Province [D]. Changsha: Central South University of Forestry and Technology, 2015.
[14] 陈林生, 黄莎, 李贤彬. 农业机械化对农民收入的影响研究——基于系统GMM模型与中介效应模型的实证分析[J]. 农村经济, 2021(6): 41-49.
[15] 陈江华, 陈艳, 罗明忠. 农业机械应用对农村劳动力转移的影响——基于CLDS数据的分析[J]. 农林经济管理学报, 2021, 20(3): 326-336.
Chen Jianghua, Chen Yan, Luo Mingzhong. Impact of agricultural machinery application on rural labor transfer: An analysis based on CLDS data [J]. Journal of AgroForestry Economics and Management, 2021, 20(3): 326-336.
[16] 于扬, 吴鸣然, 吴兆丹. 我国区域农业发展水平评价及空间分异[J]. 江苏农业科学, 2018, 46(21): 352-357.
[17] 张淑娟, 赵飞, 王凤花, 等. 山西省农业机械化发展水平的评价与分析[J]. 山西农业大学学报(自然科学版), 2009, 29(1): 81-85.
Zhang Shujuan, Zhao Fei, Wang Fenghua, et al. Evaluation and analysis of the agricultural mechanization development level in Shanxi Province [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2009, 29(1): 81-85.
[18] 周振, 马庆超, 孔祥智. 农业机械化对农村劳动力转移贡献的量化研究[J]. 农业技术经济, 2016(2): 52-62.
[19] 曹阳, 胡继亮. 中国土地家庭承包制度下的农业机械化——基于中国17省(区、市)的调查数据[J]. 中国农村经济, 2010(10): 57-65, 76.
[20] 方师乐, 卫龙宝, 伍骏骞. 农业机械化的空间溢出效应及其分布规律——农机跨区服务的视角[J]. 管理世界, 2017(11): 65-78.
[21] NY/T 1408.1—2007, 农业机械化水平评价 第1部分: 种植业[S].
[22] 徐志搏, 罗婷文, 文楚君, 等. 基于改进多边形面积法的城市土地立体化利用潜力评价——以深圳市为例[J]. 自然资源学报, 2018, 33(3): 504-514.
Xu Zhibo, Luo Tingwen, Wen Chujun, et al. Potential evaluation of threedimensional urban land use based on improved polygon area method: A case study of Shenzhen [J]. Journal of Natural Resources, 2018, 33(3): 504-514.
[23] 廖文珍, 王菲凤, 张江山. 基于多边形面积法的农田土壤重金属污染综合评价[J]. 安全与环境学报, 2013, 13(4): 151-155.
Liao Wenzhen, Wang Feifeng, Zhang Jiangshan. Comprehensive assessment for farmland heavy metal pollution based on the polygon area method [J]. Journal of Safety and Environment, 2013, 13(4): 151-155.
[24] 石辉, 张志政, 玉亚, 等. 环境质量综合评价的新方法——多边形面积法[J]. 地下水, 2009, 31(6): 98-99, 176.
Shi Hui, Zhang Zhizheng, Yu Ya, et al. A new method of environmental quality comprehensive evaluation—Polygon area evaluation [J]. Underground Water, 2009, 31(6): 98-99, 176.
[25] 周晶, 丁士军. 1991-2011年湖北农业机械化发展时空分异研究[J]. 经济地理, 2013, 33(8): 109-115.
Zhou Jing, Ding Shijun. Agricultural mechanization spatialtemporal disparities in Hubei Province from 1991 to 2011 [J]. Economic Geography, 2013, 33(8): 109-115.
[26] 滑皓捷. 山西省农业机械化现状研究及发展预测[D]. 太谷: 山西农业大学, 2013.
Hua Haojie. Current situation and development prediction of agricultural mechanization in Shanxi Province [D]. Taigu: Shanxi Agricultural University, 2013.
[27] 李艳红. 山西省农业自然资源的地域差异研究[J]. 经济师, 2010(10): 191-192.
|