[1] 广西壮族自治区统计局, 国家统计局广西调查总队. 2022年广西壮族自治区国民经济和社会发展统计公报[N]. 广西日报, 2023-03-31(005).
[2] 韩杰, 文晟, 刘庆庭, 等. 预切种式甘蔗种植机的设计与试验[J]. 华南农业大学学报, 2019, 40(4): 109-118.
Han Jie, Wen Sheng, Liu Qingting, et al. Design and test of precutting type sugarcane planter [J]. Journal of South China Agricultural University, 2019, 40(4): 109-118.
[3] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[4] 王菁, 范晓飞, 赵智慧, 等.基于YOLO算法的不同品种枣自然环境下成熟度识别[J]. 中国农机化学报, 2022, 43(11): 165-171.
Wang Jing, Fan Xiaofei, Zhao Zhihui, et al. Maturity identification of different jujube varieties under natural environment based on YOLO algorithm [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 165-171.
[5] Yao J, Qi J, Zhang J, et al. A realtime detection algorithm for Kiwifruit defects based on YOLOv5 [J]. Electronics, 2021, 10(14): 1711.
[6] Fan S, Liang X, Huang W, et al. Realtime defects detection for apple sorting using NIR cameras with pruningbased YOLOV4 network [J]. Computers and Electronics in Agriculture, 2022, 193: 106715.
[7] 李光明, 弓皓斌, 袁凯. 基于轻量化YOLOv5s的花椒簇检测研究[J]. 中国农机化学报, 2023, 44(4): 153-158.
Li Guangming, Gong Haobin, Yuan Kai. Research on lightweight pepper cluster detection based on YOLOv5s [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 153-158.
[8] 何颖, 陈丁号, 彭琳. 基于改进YOLOv5模型的经济林木虫害目标检测算法研究[J]. 中国农机化学报, 2022, 43(4): 106-115.
He Ying, Chen Dinghao, Peng Lin. Research on object detection algorithm of economic forestry pests based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 106-115.
[9] Liu J, Wang X. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network [J]. Frontiers in Plant Science, 2020, 11: 898.
[10] 唐玲玲. 基于卷积神经网络甘蔗茎节识别与切割研究[D]. 合肥: 安徽农业大学, 2021.
Tang Lingling. Study on sugarcane stalk joint recognition and cutting based on convolutional neural network [D]. Hefei: Anhui Agricultural University, 2021.
[11] 陈延祥. 基于机器视觉的甘蔗多刀切种装备设计与研究[D]. 无锡: 江南大学, 2022.
Chen Yanxiang. Design and research on sugarcane multicutter cutting equipment based on machine vision [D]. Wuxi: Jiangnan University, 2022.
[12] 赵文博, 周德强, 邓干然, 等. 基于改进YOLOv5的甘蔗茎节识别方法[J]. 华中农业大学学报, 2023, 42(1): 268-276.
Zhao Wenbo, Zhou Deqiang, Deng Ganran, et al. Sugarcane stem node recognition method based on improved YOLOv5 [J]. Journal of Huazhong Agricultural University, 2023, 42(1): 268-276.
[13] Zhu C, Wu C, Li Y, et al. Spatial location of sugarcane node for binocular visionbased harvesting robots based on improved YOLOv4 [J]. Applied Sciences, 2022, 12(6): 3088.
[14] 陈文, 余康, 李岩舟, 等. 基于网络瘦身算法的YOLOv4-tiny的甘蔗茎节识别[J]. 中国农机化学报, 2023, 44(2): 172-181.
Chen Wen, Yu Kang, Li Yanzhou, et al. Recognition of sugarcane stem node based on network slimming algorithm and YOLOv4-tiny algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 172-181.
[15] Tang Y, Han K, Guo J, et al. GhostNetV2: Enhance cheap operation with longrange attention [J]. arXiv preprint arXiv: 221112905, 2022.
[16] Li H, Li J, Wei H, et al. Slimneck by GSConv: A better design paradigm of detector architectures for autonomous vehicles [J]. arXiv preprint arXiv: 220602424, 2022.
[17] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[18] 翟建胜. 基于深度学习的小样本目标检测算法研究[D]. 成都: 电子科技大学, 2022.
Zhai Jiansheng. Research on fewshot object detection algorithm based on deep learning [D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[19] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv: 200410934, 2020.
[20] Li C, Li L, Jiang H, et al. YOLOv6: A singlestage object detection framework for industrial applications [J]. arXiv preprint arXiv: 220902976, 2022.
[21] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bagoffreebies sets new stateoftheart for realtime object detectors [J]. arXiv preprint arXiv: 220702696, 2022.
|