[1] Garcia P A, Gonzalo-Martin C, Lillo S M. A machine learning approach for agricultural parcel delineation through agglomerative segmentation [J]. International Journal of Remote Sensing, 2017, 38(7): 1809-1819.
[2] Zhang H, Liu M, Wang Y, et al. Automated delineation of agricultural field boundaries from Sentinel-2 images using recurrent residual U-Net [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102557.
[3] 石淑芹, 曹玉青, 吴文斌, 等. 耕地集约化评价指标体系与评价方法研究进展[J]. 中国农业科学, 2017, 50(7): 1210-1222.
Shi Shuqin, Cao Yuqing, Wu Wenbin, et al. Progresses in research of evaluation index system and its method on arable land intensification: A review [J]. Scientia Agricultural Sinica, 2017, 50(7): 1210-1222.
[4] 张春华, 李修楠, 吴孟泉, 等. 基于Landsat 8 OLI数据与面向对象分类的昆嵛山地区土地覆盖信息提取[J]. 地理科学, 2018, 38(11): 1904-1913.
Zhang Chunhua, Li Xiunan, Wu Mengquan, et al. Objectoriented classification of land cover based on Landsat 8 OLI image data in the Kunyu Mountain [J]. Scientia Geographica Sinica, 2018, 38(11): 1904-1913.
[5] Martin D R, Fowlkes C C, Malik J. Learning to detect natural image boundaries using local brightness color and texture cues [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530-549.
[6] Rydberg A, Borgefors G. Integrated method for boundary delineation of agricultural fields in multispectralsatellite images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2514-2520.
[7] Watkins B, Niekerk A V. A comparison of objectbased image analysis approaches for field boundary delineation using multitemporal Sentinel-2 imagery [J]. Computers and Electronics in Agriculture, 2019, 158: 294-302.
[8] Schultz B, Immitzer M, Formaggio A R, et al. Selfguided segmentation and classification of multitemporal Landsat 8 images for crop type mapping in southeastern Brazil [J]. Remote Sensing, 2015, 7(11): 14482-14508.
[9] 周文, 明冬萍, 闫鹏飞. 结合影像分区与尺度估计的耕地提取方法研究[J]. 地球信息科学学报, 2018, 20(7): 1014-1025.
Zhou Wen, Ming Dongping, Yan Pengfei. Cultivated land extraction based on image region division and scale estimation [J]. Journal of Geoinformation Science, 2018, 20(7): 1014-1025.
[10] Gopidas D K, Priya D R. Hybrid segmentation method for boundary delineation of agricultural fields in multitemporal satellite image using HS-PSO-FCNN [J]. Materials Today: Proceedings, 2022, 51: 2272-2276.
[11] Kumar M S, Jayagopal P. Delineation of field boundary from multispectral satellite images through U-Net segmentation and template matching [J]. Ecological Informatics, 2021, 64: 101370.
[12] Yan L, Roy D P. Conterminous United States crop field size quantification from multitemporal Landsat data [J]. Remote Sensing of Environment, 2016, 172: 67-86.
[13] Crommelinck S, Bennett R, Gerke M, et al. Contour detection for UAVbased cadastral mapping [J]. Remote Sensing, 2017, 9(2): 171-183.
[14] Wagner M P, Oppelt N. Extracting agricultural fields from remote sensing imagery using graphbased growing contours [J]. Remote Sensing, 2020, 12(7): 1205-1224.
[15] Graesser J, Ramankutty N. Detection of cropland field parcels from Landsat imagery [J]. Remote Sensing of Environment, 2017, 201: 165-180.
[16] Babawuro U, Bei J Z. Satellite imagery cadastral features extractions using image processing algorithms: A viable option for cadastral science [J]. International Journal of Computer Science Issues, 2012, 9(4): 30-38.
[17] Cai Z, Hu Q, Zhang, X, et al. An adaptive image segmentation method with automatic selection of optimal scale for extracting cropland parcels in small holder farming systems [J]. Remote Sensing, 2022, 14(13): 3037-3057.
[18] Masoud K M, Persello C, Tolpekin V A. Delineation of agricultural field boundaries from Sentinel-2 images using a novel superresolution contour detector based on fully convolutional networks [J]. Remote Sensing, 2019, 12(1): 59-74.
[19] Sobel I. Neighborhood coding of binary images for fast contour following and general binary array processing [J]. Computer Graphics and Image Processing, 1978, 8(1): 127-135.
[20] Canny J. A computational approach to edgedetection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
[21] Chen B, Qiu F, Wu B, et al. Image segmentation based on constrained spectral variance difference and edge penalty [J]. Remote Sensing, 2015, 7(5): 5980-6004.
[22] Cheng Taoji, Yang Xusheng, Zheng Gaoxiang, et al. DESTIN: A new method for delineating the boundaries of crop fields by fusing spatial and temporal information from WorldView and Planet satellite imagery [J]. Computers and Electronics in Agriculture, 2020, 178: 105787.
[23] Hong R, Park J, Jang S, et al. Development of a parcellevel land boundary extraction algorithm for aerial imagery of regularly arranged agricultural areas [J]. Remote Sensing, 2021, 13(6): 1167-1186.
[24] 庞新华, 朱文泉, 潘耀忠, 等. 基于高分辨率遥感影像的耕地地块提取方法研究[J]. 测绘科学, 2009, 34(1): 48-49, 161.
Pang Xinhua, Zhu Wenquan, Pan Yaozhong, et al. Research on the extraction method of cultivated land based on high resolution remote sensing image [J]. Science of Surveying and Mapping, 2009, 34(1): 48-49, 161.
[25] Pal S K, Mitra P. Multispectral image segmentation using the roughsetinitialized EM algorithm [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2495-2501.
[26] 沈占锋, 骆剑承, 吴炜, 等. 采用并行均值漂移算法实现农林地块边界的精确提取[J]. 中国图象图形学报, 2011, 16(9): 1689-1695.
Shen Zhanfeng, Luo Jianchen, Wu Wei, et al. Agricultural and forestry land boundary precise segmentation from remote sensing images by parallel mean shift algorithm [J]. Journal of Image and Graphics, 2011, 16(9): 1689-1695.
[27] 吴晗, 林晓龙, 李曦嵘, 等. 面向农业应用的无人机遥感影像地块边界提取[J]. 计算机应用, 2019, 39(1): 298-304.
Wu Han, Li Xiaolong,Li Xirong, et al.Land parcel boundary extraction of UAV remote sensing image in agricultural application [J]. Journal of Computer Applications, 2019, 39(1): 298-304.
[28] 苏腾飞, 张圣微, 李洪玉. 基于可变尺度Mean-Shift的农田高分遥感影像分割算法[J]. 国土资源遥感, 2017, 29(3): 41-50.
Su Tengfei, Zhang Shengwei, Li Hongyu. Variable scale Mean-Shift based method for cropland segmentation from high spatial resolution remote sensing images [J]. Remote Sensing for Land and Resources, 2017, 29(3): 41-50.
[29] Peng D, Zhang Y. Objectbased change detection from satellite imagery by segmentation optimization and multifeatures fusion [J]. International Journal of Remote Sensing, 2017, 38(13): 3886-3905.
[30] 杨颖频, 吴志峰, 骆剑承, 等. 时空协同的地块尺度作物分布遥感提取[J]. 农业工程学报, 2021, 37(7):166-174.
Yang Yingpin, Wu Zhifeng, Luo Jianchen, et al. Parcelbased crop distribution extraction using the spatiotemporal collaboration of remote sensing data [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7): 166-174.
[31] Bergado J R, Persello C, Gevaert C. A deep learning approach to the classification of subdecimetre resolution aerial images [J]. 2016 IEEE International Geoscience and Remote Sensing Symposium, 2016.
[32] Marmanis D, Datcu M, Esch T, et al. Deep learning earth observation classification using ImageNet Pretrained Networks [J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 105-109.
[33] 周楠, 杨鹏, 魏春山, 等. 地块尺度的山区耕地精准提取方法[J]. 农业工程学报, 2021, 37(19): 260-266.
Zhou Nan, Yang Peng, Wei Chunshan, et al. Accurate extraction method for cropland in mountainous areas based on field parcel [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 260-266.
[34] Zhou Y, Luo J, Feng L, et al. Longshorttermmemorybased crop classification using highresolution optical images and multitemporal SAR data [J]. Giscience & Remote Sensing, 2019, 56(8): 1170-1191.
[35] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural network [J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.
[36] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[37] Wang S, Chen W, Xie S M, et al. Weakly supervised deep learning for segmentation of remote sensing imagery [J]. Remote Sensing, 2020, 12(2): 207-231.
[38] GarciaPedrero A, LilloSaavedra M, RodriguezEsparragon D, et al. Deep learning for automatic outlining agricultural parcels: Exploiting the land parcel identification system [J]. IEEE Access, 2019, 7: 158223-158236.
[39] Ma L, Liu Y, Zhang X, et al. Deep learning in remote sensing applications: A metaanalysis and review [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 166-177.
|