[1] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18.
Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18.
[2] 梅宇, 梁晓. 2021 年中国茶叶产销形势报告[J]. 茶世界, 2022(3): 1-21.
[3] 王文明, 肖宏儒, 陈巧敏, 等. 基于图像处理的茶叶智能识别与检测技术研究进展分析[J]. 中国农机化学报, 2020, 41(7): 178-184.
Wang Wenming,Xiao Hongru,Chen Qiaomin,et al. Research progress analysis of tea intelligent recognition and detection technology based on image processing [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 178-184.
[4] Sugiura R, Tsuda S, Tamiya S, et al. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle [J]. Biosystems Engineering, 2016, 148: 1-10.
[5] 杨福增, 杨亮亮, 田艳娜, 等. 基于颜色和形状特征的茶叶嫩芽识别方法[J]. 农业机械学报, 2009, 40(S1): 119-123.
Yang Fuzeng, Yang Liangliang, Tian Yanna, et al. Recognition of the tea sprout based on color and shape features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(S1): 119-123.
[6] 方坤礼, 廖建平, 刘晓辉. 基于改进JSEG技术的茶叶图像嫩芽分割与识别研究[J]. 食品工业, 2017, 38(4): 134-138.
[7] Borah S, Hines E L, Bhuyan M. Wavelet transform based image texture analysis for size estimation applied to the sorting of tea granules [J]. Journal of Food Engineering, 2007, 79(2): 629-639.
[8] Sah S. Machine learning: A review of learning types [J].Preprints, 2020.
[9] 毛腾跃, 黄印, 文晓国, 等. 基于多特征与多分类器的鲜茶叶分类研究[J]. 中国农机化学报, 2020, 41(12): 75-83.
Mao Tengyue, Huang Yin, Wen Xiaoguo, et al. Research on classification of fresh tea based on multiple feature and multiple classifiers [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(12): 75-83.
[10] Singh A, Ganapathysubramanian B, Singh A K, et al. Machine learning for high throughput stress phenotyping in plants [J]. Trends in Plant Science, 2016, 21(2): 110-124.
[11] Li L, Xie S, Ning J, et al. Evaluating green tea quality based on multisensor data fusion combining hyperspectral imaging and olfactory visualization systems [J]. Journal of the Science of Food and Agriculture, 2019, 99(4): 1787-1794.
[12] Tsaftaris S A, Minervini M, Scharr H. Machine learning for plant phenotyping needs image processing [J]. Trends in Plant Science, 2016, 21(12): 989-991.
[13] 吴正敏, 曹成茂, 王二锐, 等. 基于形态特征参数的茶叶精选方法[J]. 农业工程学报, 2019, 35(11): 315-321.
Wu Zhengmin, Cao Chengmao, Wang Errui, et al. Tea selection method based on morphology feature parameters [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 315-321.
[14] 代强, 乔焰, 程曦, 等. 基于深度学习的农作物病害叶片的图像超分辨率重建[J]. 黑龙江八一农垦大学学报, 2020, 32(2): 82-90.
Dai Qiang,Qiao Yan,Cheng Xi,et al. Image superresolution reconstruction of crop disease leaves based on deep learning [J]. Journal of Heilongjiang Bayi Agricultural University, 2020, 32(2): 82-90.
[15] 王晓婷, 赵展, 王阳, 等. 基于改进Mask R-CNN的植物表型智能检测算法[J]. 中国农机化学报, 2022, 43(8): 151-157.
Wang Xiaoting, Zhao Zhan, Wang Yang, et al. Intelligent detection algorithm of plant phenotype based on improved Mask R-CNN[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 151-157.
[16] 吴昊昱. 基于小样本学习的自然场景图像中茶叶病害识别[D]. 合肥: 安徽大学, 2020.
Wu Haoyu. Identification of tea leafs diseases in natural scene images based on low shot learning [D]. Hefei: Anhui University, 2020.
[17] 余胜, 谢莉. 基于迁移学习和卷积视觉转换器的农作物病害识别研究[J]. 中国农机化学报, 2023, 44(8): 191-197.
Yu Sheng, Xie Li. Research on plant disease identification based on transfer learning and convolutional vision transformer [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 191-197.
[18] 孙肖肖. 基于深度学习的茶叶嫩芽检测和叶部病害图像识别研究[D]. 泰安: 山东农业大学, 2019.
Sun Xiaoxiao. The research of tea buds detection and leaf diseases image recognition based on deep leaning [D]. Taian: Shandong Agricultural University, 2019.
[19] 项小东, 翟蔚, 黄言态, 等. 基于Xception-CEMs神经网络的植物病害识别[J]. 中国农机化学报,2021, 42(8): 177-186.
Xiang Xiaodong, Zhai Wei, Huang Yantai, et al. Plant disease recognition based on Xception-CEMs neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 177-186.
[20] 周晓丽, 周立军, 伊力塔, 等. 基于光谱图像的森林病虫害自动检测方法[J]. 应用光学, 2023, 44(2): 420-426.
Zhou Xiaoli, Zhou Lijun, Yi Lita, et al. Automatic detection method of forest diseases and insect pests based on spectral images [J]. Journal of Applied Optics, 2023, 44(2): 420-426.
[21] 王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021,52(4): 239-247.
Wang Meihua, Wu Zhenxin, Zhou Zuguang. Finegrained identification research of crop pests and diseases based on improved CBAM via attention [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021,52(4): 239-247.
[22] 胡根生, 吴继甜, 鲍文霞, 等. 基于改进YOLOv5网络的复杂背景图像中茶尺蠖检测[J]. 农业工程学报, 2021, 37(21): 191-198.
Hu Gensheng, Wu Jitian, Bao Wenxia, et al. Detection of Ectropic cblique in complex background images using improved YOLOv5 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21): 191-198.
[23] 陈继清, 韦德鹏, 龙腾, 等. 基于卷积神经网络的害虫分类[J]. 中国农机化学报, 2022, 43(11): 188-194.
Chen Jiqing, Wei Depeng, Long Teng, et al. Pest classification based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 188-194.
[24] 温长吉, 王启锐, 陈洪锐, 等. 面向大规模多类别的病虫害识别模型[J]. 农业工程学报, 2022, 38(8): 169-177.
Weng Changji, Wang Qirui, Chen Hongrui, et al. Model for the recognition of largescale multiclass diseases and pests [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(8): 169-177.
|