中国农机化学报 ›› 2022, Vol. 43 ›› Issue (1): 67-79.DOI: 10.13733/j.jcam.issn.20955553.2022.01.011
陈盼阳1, 2,秦维彩2,王宝坤2
出版日期:
2022-01-15
发布日期:
2022-02-17
基金资助:
Chen Panyang, Qin Weicai, Wang Baokun.
Online:
2022-01-15
Published:
2022-02-17
摘要: 植保无人飞机是田间病虫害防治的有效方法。随着我国农业生产趋向机械化、智能化,植保无人飞机施药技术开始崛起。剖析国内外植保无人飞机在飞控技术、航路规划、旋翼下洗气流的研究、田间植保技术和安全施药技术规范方面的应用优势,梳理了植保无人飞机施药技术的研究进展。分析发展中面临的主要问题:拥有飞控研发能力的企业不多、航路规划的要求越来越高、旋翼下洗气流对雾滴运动规律研究不足、静电施药系统中核心技术理论研究不足等。同时归纳总结出植保无人飞机的复合控制方法、实时航路规划、在空间和时间维度下下洗气流的分布特征、多机合作等是未来几大发展趋势,为植保无人飞机的推广应用提供参考。
中图分类号:
陈盼阳, 秦维彩, 王宝坤. 植保无人飞机施药技术研究进展[J]. 中国农机化学报, 2022, 43(1): 67-79.
Chen Panyang, Qin Weicai, Wang Baokun. . Research progress on pesticide application technology of plant protection UAV[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(1): 67-79.
[1] 程忠义. 2020年度植保无人机行业发展报告发布[J]. 中国农资, 2021, 4(7): 16. [2] 汪洋. 千亿级市场迎来全新机遇与挑战 植保无人机“飞”入2.0时代[J]. 中国农资, 2020(3): 3. [3] 周子栋, 陈至坤, 赵志佳. 四旋翼无人机飞控算法综述[J]. 网络安全技术与应用, 2019(9): 33-35. [4] 邢晨, 王润涛. 捷联惯性导航算法研究[J]. 科技创新导报, 2015(17): 19-22. [5] VOL N. An overview of MEMS inertial sensing technology[J]. Sensors, 2003, 20(2): 14-21. [6] 王养柱, 崔中兴. 捷联式惯性导航系统算法研究[J]. 中国惯性技术学报, 2000, 8(2): 31-35. Wang Yangzhu, Cui Zhongxing. Research on the algorithm for SINS [J]. Journal of Chinese Inertial Technology, 2000, 8(2): 31-35. [7] 毛秀华, 吴健. 卡尔曼滤波算法研究[J]. 舰船电子对抗, 2017, 40(3): 64-68. Mao Xiuhua, Wu Jian. Research on Kalman filter algorithm [J]. Shipboard Electronic Countermeasure, 2017, 40(3): 64-68. [8] 毛红瑛, 陈至坤. 基于MEMS AHRS/GNSS的全组合导航[J]. 网络安全技术与应用, 2021(6): 128-130. Mao Hongying, Chen Zhikun. Full integrated navigation based on MEMS AHRS/GNSS [J]. Network Security Technology & Application, 2021(6): 128-130. [9] Nic, Van Der Mey. The PID learning process [J]. Control Engineering, 2017. [10] 谭惠东, 李天松, 莫雄, 等. 基于NMPCPID的无人机控制算法[J]. 桂林电子科技大学学报, 2020, 40(3): 195-200. Tan Huidong, Li Tiansong, Mo Xiong, et al. Control algorithm for QUAV based on NMPCPID [J]. Journal of Guilin University of Electronic Technology, 2020, 40(3): 195-200. [11] 刘钢. 旋翼无人机复杂地形自动平衡着陆架的设计[J]. 科学技术创新, 2021(21): 47-48. Liu Gang. Design of automatic balance landing frame for rotor UAV in complex terrain [J]. Scientific and Technological Innovation, 2021(21): 47-48. [12] Yang K, Yang G Y, Fu S. Research of control system for plant protection UAV based on PixhawkSciencedirect [J]. Procedia Computer Science, 2020, 166: 371-375. [13] 姚光乐, 王守雷. Pixhawk飞控系统的四旋翼无人机室内飞行技术研究[J]. 电子世界, 2021(7): 86-88. [14] 赵航. 基于pixhawk的多旋翼无人机避障飞行系统研发[D]. 北京: 北方工业大学, 2017. Zhao Hang. Research and development of obstacle avoidance flight system for multi rotor UAV based on Pixhawk [D]. Beijing: North University of technology, 2017. [15] 张金钱, 周明涨. 基于六旋翼植保无人飞机的农药喷洒控制研究[J]. 工业控制计算机, 2020, 33(10): 39-41. Zhang Jinqian, Zhou Mingzhang. Study on pesticide spray control based on six rotor UAV [J]. Industrial Control Computer, 2020, 33(10): 39-41. [16] 蒋彪. 基于Pixhawk的植保无人飞机控制系统研究[D]. 武汉: 湖北工业大学, 2017. Jiang Biao. Research on control system of plant protection UAV based on Pixhawk [D]. Wuhan: Hubei University of Technology, 2017. [17] 惠方林. 植保无人机航线规划的有效方法分析[J]. 南方农机, 2018, 49(6): 253. [18] Choset H. Coverage for robotics—A survey of recent results [J]. Annals of Mathematics & Artificial Intelligence, 2001, 31(1-4): 113-126. [19] Acar E U, Choset H, Zhang Y, et al. Path planning for robotic demining: Robust sensorbased coverage of unstructured environments and probabilistic methods [J]. International Journal of Robotics Research, 2003, 22(7-8): 441-466. [20] Liu Y, Xu Z, Li N, et al. A path planning algorithm for plant protection UAV for avoiding multiple obstruction areas [J]. IFACPapersOnLine, 2018, 51(17): 483-488. [21] 徐博, 陈立平, 徐旻, 等. 多作业区域植保无人机航线规划算法[J]. 农业机械学报, 2017, 48(2): 75-81. Xu Bo, Chen Liping, Xu Min, et al. Path planning algorithm for plant protection UAVs in multiple operation areas [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 75-81. [22] 武锦龙. 基于粒子群算法的植保无人机航线规划[J]. 山西电子技术, 2018, 61(2): 3-5. Wu Jinlong. Path planning method based on particle swarm optimization for plant protection UAV [J]. Shanxi Electronic Technology, 2018, 61(2): 3-5. [23] Moravec H P, Elfes A. High resolution maps from angle sonar [C]. Proceedings of the 1985 IEEE International Conference on Robotics and Automation. IEEE, 1985, 2: 116-121. [24] 王宇, 陈海涛, 李煜, 等. 基于GridGSA算法的植保无人机路径规划方法[J]. 农业机械学报, 2017, 48(7): 29-37. Wang Yu, Chen Haitao, Li Yu, et al. Path planning method based on GridGSA for plant protection UAV [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 29-37. [25] 徐利锋, 杨中柱, 黄祖胜, 等. 结合混合粒子群算法的植保无人机航线设计方法[J]. 小型微型计算机系统, 2020, 41(9): 1826-1832. Xu Lifeng, Yang Zhongzhu, Huang Zusheng, et al. Route planning method for plant protection unmanned aerial vehicles combined with hybrid particle swarm optimization [J]. Journal of Chinese Computer Systems, 2020, 41(9): 1826-1832. [26] Latombe J C. Exact cell decomposition. Robot Motion Planning [J]. US: Springer, 1991: 200-247. [27] Huang W H. Optimal linesweepbased decompositions for coverage algorithms [C]. Proceedings of the IEEE International Conference on Robotics & Automation. Seoul: IEEE, 2001. [28] Yang F B, Xue X Y, Zhang L, et al. Numerical simulation and experimental verification on downwash air flow of sixrotor agricultural unmanned aerial vehicle in hover [J]. International Journal of Agricultural & Biological Engineering, 2017, 10(4): 41-53. [29] Yoon S, Lee H C, Pulliam T H. Computational analysis of multirotor flows [C]. 54th AIAA Aerospace Sciences Meeting, 2016. [30] Zheng Y, Yang S, Liu X, et al. The computational fluid dynamic modeling of downwash flow field for a sixrotor UAV [J]. Frontiers of Agricultural Science and Engineering, 2018, 5(2). [31] 张豪, 祁力钧, 吴亚垒, 等. 基于Porous模型的多旋翼植保无人机下洗气流分布研究[J]. 农业机械学报, 2019, 50(2): 112-122. Zhang Hao, Qi Lijun, Wu Yalei, et al. Spatiotemporal distribution of downwash airflow for multirotor plant protection UAV based on porous model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 112-122. [32] 王昌陵, 何雄奎, 王潇楠, 等. 无人植保机施药雾滴空间质量平衡测试方法[J]. 农业工程学报, 2016, 32(11): 54-61. Wang Changling, He Xiongkui, Wang Xiaonan, et al. Testing method of spatial pesticide spraying deposition quality balance for unmanned aerial vehicle [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 54-61. [33] Mylapore A R, Schmitz F H. An experimental investigation of ground effect on a quad tilt rotor in hover and low speed forward flight [J]. Journal of Bacteriology, 2015, 60(1): 1482-8. [34] Pombeiro R, Mendona R, Rodrigues P, et al. Water detection from downwashinduced optical flow for a multirotor UAV [C]. Oceans. IEEE, 2016. [35] 张伟巍, 杨克军. 浅谈如何保证农用飞机喷洒作业质量[J]. 农机质量与监督, 2013(11): 24-26. [36] 吕晓兰, 傅锡敏, 吴萍, 等. 我国果园风送式喷雾技术研究现状[C]. 第二届植保机械与施药技术国际学术研讨会, 2010. [37] Wang S L, Song J L, He X K, et al. Performances evaluation of four typical unmanned aerial vehicles used for pesticide application in China [J]. International Journal of Agricultural and Biological Engineering, 2017, 10(4): 22-31. [38] 王昌陵, 何雄奎, 齐鹏, 等. 不同飞行参数下八旋翼植保无人机下洗气流场对雾滴沉积分布特性的影响[J]. 智慧农业, 2020, 2(4): 124-136. Wang Changling, He Xiongkui, Qi Peng, Yang Yi, Gao Wanlin. Effect of downwash airflow field of 8rotor unmanned aerial vehicle on spray deposition distribution characteristics under different flight parameters [J]. Smart Agriculture, 2020, 2(4): 124-136. [39] 陈盛德, 兰玉彬, 李继宇, 等. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报, 2017, 38(4): 103-109. Chen Shengde, Lan Yubin, Li Jiyu, et al. Comparison of the pesticide effects of aerial and artificial spray applications for rice [J]. Journal of South China Agricultural University, 2017, 38(4): 103-109. [40] 樊佳荣. 四旋翼轴间下洗气流聚合及其对喷雾沉积特性的影响[D]. 武汉: 武汉科技大学, 2019. Fan Jiarong. Four air down polymerization between rotor shaft and its effect on spray deposition characteristics [D]. Wuhan: Wuhan University of Science and Technology, 2019. [41] 秦维彩, 薛新宇, 周晴晴, 等. 植保无人机飞行参数对油菜田雾滴沉积分布特性和菌核病防效的影响[J]. 中国农技推广, 2019(S1): 147-150. [42] Wang P, Hu L, Zhou Z, et al. Wind field measurement for supplementary pollination in hybrid rice breeding using unmanned gasoline engine singlerotor helicopter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 54-61. [43] Tang Q, Zhang R, Chen L, et al. Droplets movement and deposition of an eightrotor agricultural UAV in downwash low field [J]. International Journal of Agricultural & Biological Engineering, 2017, 10(3): 47-56. [44] 杨东辉. 基于植保无人机施药技术的水田慈姑病虫害防治研究[D]. 扬州: 扬州大学, 2020. Yang Donghui. Study on the control of diseases and insect pests of arrowhead in paddy field based on the application technology of plant protection UAV [D]. Yang zhou: Yangzhou University, 2020. [45] 杨风波, 薛新宇, 蔡晨, 等. 多旋翼植保无人机悬停下洗气流对雾滴运动规律的影响[J]. 农业工程学报, 2018, 34(2): 64-73. Yang Fengbo, Xue Xinyu, Cai Chen, et al. Effect of down wash airflow in hover on droplet motion law for multirotor unmanned plant protection machine [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 64-73. [46] Teske M E, Thistle H W, Schou W C, et al. A review of computer models for pesticide deposition prediction [J]. Transactions of the Asabe, 2011, 54(3): 789-801. [47] Milton E T, Sandra L B, David M E, et al. AgDRIFT: A model for estimating nearfield spray drift from aerial applications [J]. Environmental Toxicology and Chemistry, 2002, 21(3): 659-671. [48] 周良富, 薛新宇, 贾卫东, 等. CFD技术在果树风送喷雾中的应用与前景分析[J]. 排灌机械工程学报, 2014, 32(9): 776-782. Zhou Liangfu, Xue Xinyu, Jia Weidong, et al. Application of CFD technology in airassisted spraying in orchard and analysis of its prospects[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(9): 776-782. [49] 宋宇. 无人直升机植保技术研究进展[J]. 现代农业科技, 2013(3): 136-138. [50] 薛新宇, 秦维彩, 孙竹, 等. N-3型无人直升机施药方式对稻飞虱和稻纵卷叶螟防治效果的影响[J]. 植物保护学报, 2013, 40(3): 273-278. Xue Xinyu, Qin Weicai, Sun Zhu, et al. Control effects of N-3 unmanned helicopter on rice planthopper and Cnaphalocrocis medinalis [J]. Acta Phytophylacica Sinica, 2013, 40(3): 273-278. [51] 李燕芳, 周振标, 谭耀华, 等. 植保无人飞机喷施30%苯甲·丙环唑微乳剂防治水稻主要病害[J]. 植物保护, 2021, 47(2): 249-253, 270. Li Yanfang, Zhou Zhenbiao, Tan Yaohua, et al. Control effect of spraying Difenoconazole·Propiconazole 30%ME by plant protection UAV on rice diseases [J]. Plant Protection, 2021, 47(2): 249-253, 270. [52] 张宋超, 薛新宇, 孙涛, 等. 植保无人飞机作物病害防治模式研究——以泗洪示范基地小麦防治为例[J]. 中国农机化学报, 2020, 41(8): 50-58. Zhang Songchao, Xue Xinyu, Sun Tao, et al. Study on the crop disease and pest control mode of crop protection UAS: A case study of wheat disease and pest control on Sihong base [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(8): 50-58. [53] 蒙艳华, 王美美, 胡红岩, 等. 植保无人飞机对4种棉花喷施脱叶催熟剂的效果研究[J]. 华南农业大学学报, 2021, 42(3): 102-110. Meng Yanhua, Wang Meimei, Hu Hongyan, et al. Effectiveness of spraying defoliation and ripening agent on four cotton cultivars using unmanned aerial vehicle [J]. Journal of South China Agricultural University, 2021, 42(3): 102-110. [54] 张宋超, 薛新宇, 孙涛, 等. 植保无人飞机油菜杂草防治与效果评估研究[J]. 中国农机化学报, 2019, 40(9): 48-53, 59. Zhang Songchao, Xue Xinyu, Sun Tao, et al. Study on weed control of plant protection UAV and effect evaluation in rape filed [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 48-53, 59. [55] 赵冰梅, 丁丽丽, 张强, 等. 电动多旋翼植保无人机低容量喷雾防治玉米三点斑叶蝉的应用研究[J]. 植物保护, 2018, 44(1): 186-189. Zhao Bingmei, Ding Lili, Zhang Qiang, et al. Control effects of low volume spraying using unmanned aerial vehicle (UAV) against Zygina salina Mit [J]. Plant Protection, 2018, 44(1): 186-189. [56] 蒙艳华, 王美美, 姚伟祥. 植保无人飞机飞行速度对主干形果树喷雾作业效果的影响[J]. 中国南方果树, 2021, 50(1): 96-99. Meng Yanhua, Wang Meimei, Yao Weixiang. Effects of flight speed of plant protection UAV on spray operation of trunk fruit trees [J]. South China Fruits, 2021, 50(1): 96-99. [57] 韩鹏, 崔宗胤, 闫晓静, 等. 三类喷雾助剂在植保无人飞机精准果树作业模式下对丘陵柑橘雾滴沉积分布的影响[J]. 农药学学报, 2020, 22(6): 1076-1084. Han Peng, Cui Zongyin, Yan Xiaojing, et al. Effect of three types of spray adjuvants on the distribution of spray droplet deposition in hilly citrus under precise fruit tree operation mode of unmanned aerial vehicles [J]. Chinese Journal of Pesticide Science, 2020, 22(6): 1076-1084. [58] 张盼, 吕强, 易时来, 等. 小型无人机对柑橘园的喷雾效果研究[J]. 果树学报, 2016, 33(1): 34-42. Zhang Pan, Lü Qiang, Yi Shilai, et al. Evaluation of spraying effect using small unmanned aerial vehicle (UAV) in citrus orchard [J]. Journal of Fruit Science, 2016, 33(1): 34-42. [59] 王明, 陈奕璇, 苏小计, 等. 添加助剂对植保无人飞机低容量喷雾在矮化密植苹果园中雾滴沉积分布及苹果黄蚜防治效果的影响[J]. 植物保护学报, 2019, 46(6): 1316-1323. Wang Ming, Chen Yixuan, Su Xiaoji, et al. Effects of adjuvants in low volume spraying by unmanned aerial vehicle on the deposition distribution of pesticide droplets and control efficiency against aphis spiraecola in apple orchards of highdensity dwarfing cultivation pattern [J]. Acta Phytophylacica Sinica, 2019, 46(6): 1316-1323. [60] 顾伟, 薛新宇, 孙竹. 植保无人飞机标准现状与制定建议[J]. 农业工程技术, 2018, 38(9): 55-58. [61] 王士林, 何雄奎, 宋坚利, 等. 双极性接触式航空机载静电喷雾系统荷电与喷雾效果试验[J]. 农业工程学报, 2018, 34(7): 82-89. Wang Shilin, He Xiongkui, Song Jianli, et al. Charging and spraying performance test of bipolar contact electrostatic spraying system for unmanned aerial vehicle [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 82-89. [62] 栾华, 张青, 王稳祥. Z03K000B静电频谱喷洒系统加改装与飞行试验[J]. 新疆农垦科技, 2006(5): 46-47. Luan Hua, Zhang Qing, Wang Wenxiang. Installation and modification of Z03K000B electrostatic spray system and flight tests [J]. Xinjiang Farmland Reclamation Science & Technology, 2006, (5): 46-47. [63] Carlton J B, Isler D A. Development of a device to charge aerial sprays electrostatically [J]. Agricultural Aviation, 1966, 8(2): 44-51. [64] Kihm K D, Kim B H. Atomization, charge, and deposition characteristics of bipolarly charged aircraft sprays [J]. Atomization and Sprays, 1992, 2(4): 463-481. [65] Teske M E, Kaufman A E, Thistle H W, et al. Droplet evaporation corrections for aerial spray drift modeling I: Theoretical considerations[J]. Atomization and Sprays, 2003, 13(2-3): 243-250. [66] 刘强. 庄浪县首次引进无人机超低量施药技术初报[J]. 农业科技与信息, 2016(31): 29. [67] 朱玉坤. 防治棉蚜高效低容量施药技术研究[D]. 泰安: 山东农业大学, 2013. Zhu Yukun. Study on high efficiency and low volume pesticide application technology for controlling cotton aphid [D]. Taian: Shandong Agricultural University, 2013. [68] 曾爱军. 减少农药雾滴飘移的技术研究[D]. 北京: 中国农业大学, 2005. Zeng Aijun. Study on the technology of reducing pesticide droplet drift [D]. Beijing: China Agricultural University, 2005. [69] 董洁芳, 王金凤. 农机职业技能人才培育模式探析[J]. 农机科技推广, 2020(9): 33-34, 38. |
[1] | 邓成志, 王善文, 黎展鹏, 陈翀, 魏志强, 段廷亿. 基于离散元法的锄板入土作业参数优化分析[J]. 中国农机化学报, 2022, 43(7): 188-196. |
[2] | 何敬宇, 宋卫东, 王教领, 丁天航, 王明友. 折射窗干燥试验台设计与干燥品质评价[J]. 中国农机化学报, 2022, 43(6): 110-118. |
[3] | 徐效伟, 魏海, 颜建春, 鲍国丞, 杜元杰, 谢焕雄. 花生荚果离散元仿真参数标定[J]. 中国农机化学报, 2022, 43(11): 81-89. |
[4] | 牛其强, 王保兴, 董和银, 范国强, 吴爱兵, 刘猛. 自走式全混合日粮制备机取料仿真与参数优化[J]. 中国农机化学报, 2022, 43(10): 99-106. |
[5] | 张三强, 邹星, 陈源, 章桃娟. 船式拖拉机气层减阻影响因素分析与参数优化研究[J]. 中国农机化学报, 2022, 43(1): 20-26. |
[6] | 于家川, 李明军, 李伟, 廖培旺, 李明升, 张爱民. 旋耕式棉花封土机的优化与试验[J]. 中国农机化学报, 2022, 43(1): 33-38. |
[7] | 段建, 陈树人, 张体强, . 黄花苜蓿收获机设计与试验[J]. 中国农机化学报, 2021, 42(8): 10-17. |
[8] | Fiaz Ahmad, 邱白晶, 董晓娅, 马靖, 黄鑫, Shibbir Ahmed, Farman Ali Chandio, 蔡晨, . 植保无人飞机作业参数对田外除草靶标区内外雾滴沉积规律的影响[J]. 中国农机化学报, 2021, 42(8): 74-82. |
[9] | 崔丽霞, 王相友, 许英超. 基于响应面法的马铃薯分选机参数优化及试验*[J]. 中国农机化学报, 2021, 42(11): 80-88. |
[10] | 廖培旺, 王仁兵, 宫建勋, 刘凯凯, 张爱民, 李伟, . 基于响应面法的棉秆压捆试验研究[J]. 中国农机化学报, 2021, 42(10): 112-120. |
[11] | 郭哲琦, 孟生旺, . 基于贝叶斯克里金的山东省小麦产量时空相依模型[J]. 中国农机化学报, 2021, 42(10): 139-145. |
[12] | 田茁;李城轩;. 基于改进ORB的害虫图像特征匹配方法[J]. 中国农机化学报, 2020, 41(3): 134-140. |
[13] | 范鑫;王建国;兰玉彬;张佳蕾;伊丽丽;韩鑫;. 飞行参数对结荚期花生航空施药雾滴沉积特性的影响[J]. 中国农机化学报, 2020, 41(12): 36-41. |
[14] | 袁春元;宋盘石;蔡锦康;王新彦;华周;. 基于CSO-PSO算法的半主动空气悬架系统参数优化研究[J]. 中国农机化学报, 2020, 41(12): 95-101. |
[15] | 位国建;姜伟;荐世春;李娜;崔荣江;. 玉米秸秆打捆灭茬一体机设计与试验[J]. 中国农机化学报, 2019, 40(6): 16-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296