English

中国农机化学报

中国农机化学报 ›› 2022, Vol. 43 ›› Issue (1): 61-66.DOI: 10.13733/j.jcam.issn.20955553.2022.01.010

• • 上一篇    下一篇

基于单神经元PID的变量喷雾系统精准控制方法研究

王定康1,于丰华1, 2,许童羽1, 2,陈春玲1, 2,姚伟祥1, 2   

  1. 1. 沈阳农业大学信息与电气工程学院,沈阳市,110161; 
    2. 辽宁省农业信息化工程技术中心,沈阳市,110161
  • 出版日期:2022-01-15 发布日期:2022-02-17
  • 基金资助:
    2019年度辽宁省重点研发计划(2019JH2/10200002)

Research on precision control method of variable spray system based on single neuron PID

Wang Dingkang, Yu Fenghua, Xu Tongyu, Chen Chunling, Yao Weixiang.   

  • Online:2022-01-15 Published:2022-02-17

摘要: 针对现存农用无人机变量喷雾系统响应时间较长、超调量较大、跟随效果不稳定等问题,设计一种基于单神经元PID控制的农用无人机变量喷雾系统。该系统采用传感器检测流量信息作为控制依据,运用单神经元自学习能力不断调整PID参数精确调控喷雾流量,实现变量调节快速稳定的目标。为验证本系统控制算法的实际变量控制效果,采用Matlab平台对传统PID和单神经元PID控制算法进行仿真分析;室内喷雾试验过程中,对比单神经元PID和传统PID的连续变量效果;田间试验过程中,使用流量传感器检测实际的变量喷雾效果,采用水敏纸获取雾滴沉积量分布。算法仿真结果表明单神经元PID控制算法在上升时间方面优于传统PID,延迟时间较短,无稳态误差。室内喷雾试验结果表明,采用单神经元PID进行变量控制时的喷雾变化过程稳定迅速,喷雾流量最大超调量3.88%,平均上升时间0.85 s,平均绝对误差7.13%;田间变量喷雾试验结果表明,系统平均上升时间0.87 s,喷雾量控制误差在5%以内;雾滴测试结果表明,雾滴沉积量随喷雾流量的增加呈相应增加趋势。研究结果可为变量喷雾技术的发展提供理论基础。

关键词: 农用无人机, 变量喷雾, 单神经元, PID

Abstract:  An agricultural UAV variable spraying system based on singleneuron PID control is designed for the problems of long response time, large overshoot, and following unstable effect of the existing agricultural UAV variable spraying system. The system adopts the sensor detection flow information as the control basis and uses the single neuron selflearning ability to continuously adjust the PID parameters to precisely regulate the spray flow and achieve the goal of fast and stable variable regulation. In order to verify the actual variable control effect of this system control algorithm, Matlab was used to simulate and analyze the traditional PID and singleneuron PID control algorithms. During the indoor spraying experiment, the continuous variable effect of singleneuron PID and traditional PID was compared. During the field test, the actual variable spraying effect was detected using flow sensors, and watersensitive paper was used to obtain the droplet deposition distribution. The algorithm simulation results show that the singleneuron PID control algorithm is better than the conventional PID in terms of rising time, with a shorter delay time and no steadystate error. The indoor spraying experimental results show that the spraying change process is stable and rapid when using singleneuron PID for variable control, with a maximum overshoot of 3.88% in spray flow rate, an average rise time of 0.85 s, and an average absolute error of 7.13%. The field variable spraying test results show that the average rise regulation time of the system is 0.87 s, and the spraying volume control error is within 5%. The droplet test results show that the deposition of droplets increased with the increase of spray flow rate. The results of the study can provide a theoretical basis for the development of variable spraying technology.

Key words: UAV, variable spray, single neuron, PID

中图分类号: