[1] 赵翠萍, 秦冠宇, 张颖,等. 基于扎根理论方法的烟叶生产全程机械化实现路径分析[J]. 烟草科技, 2023, 56(5): 33-41.
Zhao Cuiping, Qin Guanyu, Zhang Ying, et al. Realization path analysis to achieve complete tobacco production mechanization based on grounded theory [J].Tobacco Science & Technology, 2023, 56(5): 33-41.
[2] 汪睿琪, 张炳辉, 顾钢, 等. 基于YOLOv5的鲜烟叶成熟度识别模型研究[J]. 中国烟草学报, 2023, 29(2): 46-55.
Wang Ruiqi, Zhang Binghui, Gu Gang, et al. Recognition model of tobacco fresh leaf maturity based on YOLOv5[J]. Acta Tabacaria Sinica, 2023, 29(2): 46-55.
[3] 苟园旻, 闫建伟, 张富贵, 等. 水果采摘机器人视觉系统与机械手研究进展[J]. 计算机工程与应用, 2023, 59(9): 13-26.
Gou Yuanmin, Yan Jianwei, Zhang Fugui, et al. Research progress on vision system and manipulator of fruit picking robot [J].Computer Engineering and Applications,2023,59(9): 13-26.
[4] 顾文娟, 丁灿, 盖小雷, 等. 基于轻量化MobileViT深度学习模型的烤烟自动分组方法[J]. 中国烟草科学, 2024, 45(1): 104-111, 120.
Gu Wenjuan, Ding Can, Gai Xiaolei, et al. Automatic grouping method of flue-cured tobacco based on MobileViT [J]. Chinese Tobacco Science, 2024, 45(1): 104-111, 120.
[5] 朱波, 胡朋, 刘宇晨, 等. 基于CSS—Cascade Mask R—CNN的有遮挡多片烟叶部位识别[J].农业工程学报,2024,40(9):270-279.
Zhu Bo, Hu Peng, Liu Yuchen, et al. Recognition of the position for partially occluded multiple tobacco leaves based on CSS—Cascade Mask R—CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(9): 270-279.
[6] 苏帅林, 甘博敏, 龙杰, 等. 融合坐标注意力与混联采样的烟叶主脉轻量级语义分割[J]. 计算机工程与应用, 2024, 60(24): 250-259.
Su Shuailin, Gan Bomin, Long Jie, et al. Lightweight semantic segmentation of tobacco main veins fusing coordinate attention and dense connectivity [J].Computer Engineering and Applications, 2024, 60(24): 250-259.
[7] Girshick R. Fast R—CNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[8] Ren S, He K, Girshick R, et al. Faster R—CNN: Towards real-time object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[9] 张万枝, 曾祥, 刘树峰, 等. 基于改进YOLOv5s的马铃薯种薯芽眼检测方法[J]. 农业机械学报, 2023, 54(9): 260-269.
Zhang Wanzhi, Zeng Xiang, Liu Shufeng,et al. Detection method of potato seed bud eye based on improved YOLOv5s [J].Transactions of the Chinese Society for Agricultural Machinery,2023, 54(9): 260-269.
[10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection [C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[11] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[12] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. arXiv preprint arXiv:1804.02767, 2018.
[13] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[14] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv:2004.10934, 2020.
[15] Zhu X, Lyu S, Wang X, et al. TPH—YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[16] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[17] 李柯泉, 陈燕, 刘佳晨,等. 基于深度学习的目标检测算法综述[J]. 计算机工程, 2022, 48(7): 1-12.
Li Kequan, Chen Yan, Liu Jiachen, et al.Survey of deep learning-based object detection algorithms [J].Computer Engineering,2022, 48(7): 1-12.
[18] 李尚平, 卞俊析, 李凯华,等. 基于改进YOLOv5s的复杂环境下蔗梢分叉点识别与定位[J]. 农业机械学报, 2023, 54(11): 247-258.
Li Shangping, Bian Junxi, Li Kaihua, et al. Identification and height localization of sugarcane tip bifurcation points in complex environments based on improved YOLOv5s [J].Transactions of the Chinese Society for Agricultural Machinery,2023, 54(11):247-258.
[19] 郭辉, 陈海洋, 高国民, 等. 基于YOLOv5m的红花花冠目标检测与空间定位方法[J]. 农业机械学报, 2023, 54(7): 272-281.
Guo Hui, Chen Haiyang, Gao Guomin, et al. Safflower corolla object detection and spatial positioning methods based on YOLOv5m [J].Transactions of the Chinese Society for Agricultural Machinery,2023, 54(7): 272-281.
[20] 黄家才, 唐安, 陈光明, 等. 基于Compact—YOLOv4的茶叶嫩芽移动端识别方法[J]. 农业机械学报, 2023, 54(3): 282-290.
Huang Jiacai, Tang An, Chen Guangming, et al. Mobile recognition solution of tea buds based on Compact—YOLOv4 algorithm [J].Transactions of the Chinese Society for Agricultural Machinery,2023, 54(3):282-290.
[21] 张楠楠, 张晓, 白铁成, 等. 基于CBAM—YOLOv7的自然环境下棉叶病虫害识别方法[J]. 农业机械学报, 2023, 54(S1): 239-244.
Zhang Nannan,Zhang Xiao,Bai Tiecheng,et al. Identification method of cotton leaf pests and diseases in natural environment based on CBAM—YOLOv7 [J].Transactions of the Chinese Society for Agricultural Machinery,2023, 54(S1): 239-244.
[22] 杨佳昊, 左昊轩, 黄祺成, 等. 基于YOLOv5s的作物叶片病害检测模型轻量化方法[J]. 农业机械学报, 2023, 54(S1): 222-229.
Yang Jiahao, Zuo Haoxuan, Huang Qicheng, et al. Lightweight method for crop leaf disease detection model based on YOLOv5s [J]. Transactions of the Chinese Society for Agricultural Machinery,2023, 54(S1):222-229.
[23] 王昱, 姚兴智, 李斌, 等. 基于改进YOLOv7—tiny的甜椒畸形果识别算法[J]. 农业机械学报, 2023, 54(11): 236-246.
Wang Yu, Yao Xingzhi, Li Bin, et al. Malformed sweet pepper fruit identification algorithm based on improved YOLOv7—tiny [J].Transactions of the Chinese Society for Agricultural Machinery,2023, 54(11): 236-246.
[24] Zheng Z, Wang P, Ren D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation [J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
|