English

中国农机化学报

中国农机化学报 ›› 2024, Vol. 45 ›› Issue (10): 193-198.DOI: 10.13733/j.jcam.issn.2095-5553.2024.10.028

• 农业信息化工程 • 上一篇    下一篇

基于SIFT和自适应阈值的RANSAC算法的茶饼图像配准研究

白晓虎1,2,杨瑞峰1,2,郭晨霞1,2,李坤1,2   

  1. (1. 中北大学仪器与电子学院,太原市,030051; 2. 山西省自动化检测装备与系统工程技术研究中心,太原市,030051)
  • 出版日期:2024-10-15 发布日期:2024-09-30
  • 基金资助:
    山西省中央引导地方科技发展自由探索类基础研究项目(YDZJSX2022A027)

Research on image registration of tea cakes based on SIFT and RANSAC algorithm with adaptive threshold

Bai Xiaohu1, 2, Yang Ruifeng1, 2, Guo Chenxia1, 2, Li Kun1, 2#br#   

  1. (1. School of Instrumentation and Electronics, North University of China, Taiyuan, 030051, China; 
    2. Shanxi Automatic Testing Equipment and System Engineering Research Center, Taiyuan, 030051, China)
  • Online:2024-10-15 Published:2024-09-30

摘要: 在茶饼图像的特征点精匹配中,人工选择阈值会导致误匹配和漏匹配问题,为此提出一种基于F1-Score最大化的方法,自动选取距离阈值的随机抽样一致性(RANSAC)算法进行特征点对筛选。用尺度不变特征变换(SIFT)算法提取茶饼图像的特征点,采用快速近似最近邻(FLANN)算法将异源图像提取出来的特征点进行粗匹配,用改进后的RANSAC算法优化特征点匹配。通过对比不同算法的匹配准确率和均方根误差,证明本文算法在经过旋转、视角以及亮度变换的茶饼图像上能够综合考虑准确率和召回率,自适应地确定一个距离阈值,改进后的RANSAC算法使其准确率最大可以提高18.9%,均方根误差平均降低0.706 pixel,研究证明所提算法能够达到更好的匹配效果。

关键词: 茶叶, 溯源鉴定, 特征点匹配, 尺度不变特征变换, 随机抽样一致性

Abstract: In the feature point fine matching of tea cake images, manual selection of threshold will lead to false matching and missing matching problems, a method based on F1-Score maximization is proposed to automatically select the Random Sample Consensus (RANSAC) algorithm of distance threshold for feature point pair screening. In this paper, the Scale Invariant Feature Transform (SIFT) algorithm is used to extract the feature points of the tea cake image, and the Fast Library for Approximate Nearest Neighbors (FLANN) algorithm is used to coarsely match the feature points extracted from the heterogeneous image, and then the improved RANSAC algorithm is used to optimize the feature point matching. By comparing the matching accuracy and rms error of different algorithms, it is proved that the proposed algorithm can comprehensively consider the accuracy and recall rate of tea cake images after rotation, viewing angle and brightness transformation, and adaptively determine a distance threshold, and the improved RANSAC algorithm can increase its accuracy by up to 18.9%, and reduce the rms error by 0.706 pixel on average. Studies have proved that the proposed algorithm can achieve better matching effect.

Key words: tea, traceability identification, feature point matching, scale invariant feature transform, random sample consensus

中图分类号: