[ 1 ] 邢斌, 于华竟, 徐大明, 等. 基于区块链的红茶质量安全追溯系统开发及应用[J]. 中国农机化学报, 2022, 43(11): 133-138.
Xing Bin, Yu Huajing, Xu Daming, et al. Development and application of traceability system for black tea based on blockchain [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 133-138.
[ 2 ] 郑开涛, 刘世洪. 农产品质量安全溯源多边平台的研究与设计[J]. 中国农业科技导报, 2017, 19(12): 52-58.
Zheng Kaitao, Liu Shihong. Studies and design of traceability multisided platform for quality and safety of agricultural products [J]. Journal of Agricultural Science and Technology, 2017, 19(12): 52-58.
[ 3 ] Wang J, Li Y, Chang Z, et al. Fine‑grained texture identification for reliable product traceability[J]. IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shenzhen, China, 2021: 1-4.
[ 4 ] 陈旭, 徐超义. 基于NSCT子带融合特征的纹理材质分类[J]. 计算机应用与软件, 2023, 40(2): 217-222, 264.
Chen Xu, Xu Chaoyi. Texture material classification based on NSCT sub‑band fusion features [J]. Computer Applications and Software, 2023, 40 (2): 217-222, 264.
[ 5 ] 王辉. 基于灰度共生矩阵木材表面纹理模式识别方法的研究[D]. 哈尔滨: 东北林业大学, 2007.
[ 6 ] B Zitová, Flusser J. Image registration methods: A survey [J]. Image and Vision Computing, 2003, 21(11): 977-1000.
[ 7 ] Zeng L, Du Y, Lin H, et al. A novel region‑based image registration method for multisource remote sensing images via CNN [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021: 1821-1831.
[ 8 ] 刘忠贺, 李宗春, 郭迎钢, 等. 利用RANSAC算法筛选坐标转换中相对稳定公共点[J]. 测绘科学技术学报, 2019(5): 487-493.
[ 9 ] Hossein‑Nejad Z, Nasri M. An adaptive image registration method based on SIFT features and RANSAC transform [J]. Computers & Electrical Engineering, 2016: 524-537.
[10] 樊逸清. 优化特征点匹配的多单应变换方法[D]. 上海:华东师范大学, 2019.
[11] 刘川熙, 赵汝进, 刘恩海, 等. 基于RANSAC的SIFT匹配阈值自适应估计[J]. 计算机科学, 2017, 44(S1): 157-160.
Liu Chuanxi, Zhao Rujin, Liu Enhai, et al. Estimate threshold of SIFT matching adaptively based on RANSAC [J]. Computer Science, 2017, 44(S1): 157-160.
[12] 唐忠智, 闫兵, 黄燕, 等. 一种基于双预筛选改进的SIFT图像立体匹配算法[J]. 激光与光电子学进展, 2021(22): 190-199.
Tang Zhongzhi, Yan Bing, Huang Yan, et al. Modified SIFT algorithm for image stereo matching based on bidirectional pre‑screening [J]. Laser & Optoelectronics Progress, 2021 (22): 190-199.
[13] 于子雯, 张宁, 潘越, 等. 基于改进的SIFT算法的异源图像匹配[J]. 激光与光电子学进展, 2022(12): 214-225.
[14] 钟岷哲, 唐泽恬, 王昱皓, 等. 基于纹理分类的多阈值SIFT图像拼接算法[J]. 计算机仿真, 2022, 39(10): 364-368.
Zhong Minzhe, Tang Zetian, Wang Yuhao, et al. Multi‑threshold SIFT image stitching algorithm based on texture classfication [J]. Computer Simulation, 2022, 39(10): 364- 368.
[15] 刘九庆, 项前, 王宇航. 基于SIFT算法和改进的RANSAC算法对森林火灾的图像识别与试验研究[J]. 森林工程, 2022, 38 (6): 96-103.
[16] 陈宁, 刘志坚, 苏雪平, 等. 基于改进的SIFT算法的集成电路图像拼接[J]. 国外电子测量技术, 2021, 40(6): 159-164.
[17] 孙雪强, 黄旻, 张桂峰, 等. 基于改进SIFT的多光谱图像匹配算法[J]. 计算机科学, 2019, 46(4): 280-284.
Sun Xueqiang, Huang Min, Zhang Guifeng, et al. Multispectral image matching algorithm based on improved SIFT [J]. Computer Science, 2019, 46(4): 280-284.
[18] 任彬, 宋海丽, 赵增旭, 等. 基于RANSAC的视觉里程计优化方法研究[J]. 仪器仪表学报, 2022, 43(6): 205-212.
Ren Bin, Song Haili, Zhao Zengxu, et al. Study on optimization method of visual odometry based on RANSAC [J]. Chinese Journal of Scientific Instrument, 2022, 43(6): 205-212.
[19] 张中岳, 周惠兴, 王舜, 等. 基于RANSAC的WTLSD平面拟合算法研究[J]. 国外电子测量技术, 2022, 41(6): 93-98.
Zhang Zhongyue, Zhou Huixing, Wang Shun, et al. Research on algorithm of plan fitting of RANSAC‑WTLSD [J]. Foreign Electronic Measurement Technology, 2022, 41 (6): 93-98.
[20] 何显辉, 王凯, 张平, 等. 融合颜色和纹理的多特征匹配算法[J]. 激光杂志, 2022, 43(3): 87-91.
He Xianhui, Wang Kai, Zhang Ping, et al. Multi feature matching algorithm integrating color and texture [J]. Laser Journal, 2022, 43(3): 87-91.
[21] 范雪婷, 张磊, 赵朝贺. 改进仿射尺度不变特征变换算法的图像配准[J]. 计算机应用, 2014, 34(5): 1449-1452.
[22] 张旭辉, 杨红强, 白琳娜, 等. 基于改进RANSAC特征提取的掘进装备视觉定位方法研究[J]. 仪器仪表学报, 2022, 43(12): 168-177.
|