[1] 赵建军. 变频跟踪调速带式输送机PLC模糊控制系统设计[J]. 中国矿业, 2020, 29(3): 100-104.
Zhao Jianjun. Design of PLC fuzzy control system for frequency tracking speed regulating belt conveyor [J]. China Mining Magazine, 2020, 29(3): 100-104.
[2] Shan X M. Research on control system of greenhouse temperature and humidity based on Fuzzy PID [J]. Applied Mechanics and Materials, 2014, 687: 3395-3398.
[3] Li Q, Zhang D, Ji J, et al. Modeling of natural ventilation using a hierarchical fuzzy control system for a new energysaving solar greenhouse [J]. Applied Engineering in Agriculture, 2018, 34(6): 953-962.
[4] 姬鹏飞, 付娅琦, 杨北方. 基于单神经元PID的温室系统多变量解耦控制研究[J]. 中国农机化学报, 2020, 41(8): 143-147.
Ji Pengfei, Fu Yaqi, Yang Beifang. Research on decoupling control of multivariable greenhouse system based on single neuron PID [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(8): 143-147.
[5] Azaza M, Echaieb K, Tadeo F, et al. Fuzzy decoupling control of greenhouse climate [J]. Arabian Journal for Science and Engineering, 2015, 40: 2805-2812.
[6] Chen L, Du S, Xu D, et al. Sliding mode control based on disturbance observer for greenhouse climate systems [J].Mathematical Problems in Engineering, 2018, 2018.
[7] 何南思. 温室大棚环境参数控制[D]. 沈阳: 沈阳工业大学, 2014.He Nansi. Environmental parameters control for greenhouse [D]. Shenyang: Shenyang University of Technology, 2014.
[8] Gurban E H, Dragomir T L, Andreescu G D. Greenhouse climate control enhancement by using genetic algorithms [J]. Journal of Control Engineering and Applied Informatics, 2014, 16(3): 35-45.
[9] Gurban E H, Andreescu G D. Comparison study of PID controller tuning for greenhouse climate with feedbackfeedforward linearization and decoupling [C]. 2012 16th International Conference on System Theory, Control and Computing (icstcc). IEEE, 2012: 1-6.
[10] Pión S, Camacho E F, Kuchen B, et al. Constrained predictive control of a greenhouse [J]. Computers and Electronics in Agriculture, 2005, 49(3): 317-329.
[11] Hoyo A, Moreno J C, Guzmán J L, et al. Robust QFTbased feedback linearization controller of the greenhouse diurnal temperature using natural ventilation [J]. IEEE Access, 2019, 7: 64148-64161.
[12] 塔娜, 马文娟, 张海鑫. 日光温室在自然通风状态下内拱膜对室内温度的影响[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(3): 88-92.
Ta Na, Ma Wenjuan, Zhang Haixin. Effect of internal film on temperature field in solar greenhouse with natural ventilation [J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2016, 37(3): 88-92.
[13] 袁洪波, 李莉, 王俊衡, 等. 基于温度积分算法的温室环境控制方法[J]. 农业工程学报, 2015, 31(11): 221-227.
Yuan Hongbo, Li Li, Wang Junheng, et al. Control method for greenhouse climate based on temperature integration [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 221-227.
[14] Maher A, Kamel E, Enrico F, et al. An intelligent system for the climate control and energy savings in agricultural greenhouses [J]. Energy Efficiency, 2016, 9: 1241-1255.
[15] Van Beveren P J M, Bontsema J, Van Straten G, et al. Optimal control of greenhouse climate using minimal energy and grower defined bounds [J]. Applied Energy, 2015, 159: 509-519.
[16] Hameed I A, Sorensen C G. A more energy efficient controller for the greenhouses climate control system [J]. Applied Engineering in Agriculture, 2010, 26(3): 491-498.
[17] Qian T, Dieleman J A, Elings A, et al. Response of tomato crop growth and development to a vertical temperature gradient in a semiclosed greenhouse [J]. The Journal of Horticultural Science and Biotechnology, 2015, 90(5): 578-584.
[18] Mahmood F, Govindan R, Bermak A, et al. Energy utilization assessment of a semiclosed greenhouse using datadriven model predictive control [J]. Journal of Cleaner Production, 2021, 324: 129172.
[19] Sagheer A, Mohammed M, Riad K, et al. A cloudbased IoT platform for precision control of soilless greenhouse cultivation [J]. Sensors, 2020, 21(1): 223.
[20] 彭炫. 基于神经网络的大棚环境变量解耦控制系统的研究与开发[D]. 新疆: 新疆大学, 2018.Peng Xuan. Research and design on greenhouse environment decoupling control based on neural network [D]. Xinjiang: Xinjiang University, 2018.
[21] 邰成. 智能温室控制算法的研究与应用[D]. 南京: 南京邮电大学, 2014.〖JP2〗Tai Cheng. The research and applications on the intelligent control algorithm for the greenhouse [D]. 〖JP3〗Nanjing: Nanjing University of Posts and Telecommunications, 2014.〖JP〗
[22] 蒋鼎国. 基于改进型BP神经网络PID控制器的温室温度控制技术[J]. 实验室研究与探索, 2015, 34(1): 9-13.
Jiang Dingguo. The temperature control of greenhouse based on novel PID controller [J]. Research and Exploration in Laboratory, 2015, 34(1): 9-13.
[23] 夏爽, 李丽宏. 基于PSORBF神经网络在温室温度预测中的应用[J]. 计算机工程与设计, 2017, 38(3): 744-748.
Xia Shuang, Li Lihong. Application of greenhouse temperature prediction based on PSORBF neutral network [J]. Computer Engineering and Design, 2017, 38(3): 744-748.
[24] 纪雪玲, 李明, 李玮. 一种克服局部最优的收缩因子PSO算法[J]. 计算机工程, 2011, 37(20): 213-215.
Ji Xueling, Li Ming, Li Wei. Constriction factor particle swarm optimization algorithm with overcoming local optimum [J]. Computer Engineering, 2011, 37(20): 213-215.
[25] 张永芳, 王芳. 基于SSARBF网络的日光温室温湿度预测模型研究[J]. 河北农业大学学报, 2021, 44(3): 115-121.
Zhang Yongfang, Wang Fang. Study on temperature and humidity prediction model of solar greenhouse based on SSARBF network [J]. Journal of Hebei Agricultural University, 2021, 44(3): 115-121.
[26] Jung D H, Kim H J, Kim J Y, et al. Model predictive control via output feedback neural network for improved multiwindow greenhouse ventilation control [J]. Sensors, 2020, 20(6): 1756.
[27] 申超群, 杨静. 温室温度控制系统的RBF神经网络PID控制[J]. 控制工程, 2017, 24(2): 361-364.
Shen Chaoqun, Yang Jing. RBF neural network PID control for greenhouse temperature control system [J]. Control Engineering of China, 2017, 24(2): 361-364.
[28] Belhaj Salah L, Fourati F. A greenhouse modeling and control using deep neural networks [J]. Applied Artificial Intelligence, 2021, 35(15): 1905-1929.
[29] Takahata K, Miura H. Effects of growth period and air temperature on the position of the inflorescence on the stem of tomato plants [J]. The Horticulture Journal, 2017, 86(1): 70-77.
[30] Sagrado J D, Sanchez J A, Rodríguez F, et al. Bayesian networks for greenhouse temperature control [J]. Journal of Applied Logic, 2016, 17: 25-35.
|