[1]
Taki M, Ajabshirchi Y, Ranjbar S F, et al. Heat transfer and MLP neural network models to predict inside environment variables and energy lost in a semisolar greenhouse [J]. Energy and Buildings, 2016, 110: 314-329.
[2]
Wang D, Wang M, Qiao X. Support vector machines regression and modeling of greenhouse environment [J]. Computers and Electronics in Agriculture, 2009, 66(1): 46-52.
[3]
周伟, 李永博, 汪小旵. 基于CFD非稳态模型的温室温度预测控制[J]. 农业机械学报, 2014, 45(12): 335-340.
Zhou Wei, Li Yongbo, Wang Xiaochan. Model predictive control of air temperature in greenhouse based on CFD unsteady model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 335-340.
[4]
Saberian A, Sajadiye S M. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation [J]. Renewable Energy, 2019, 138: 722-737.
[5]
左志宇, 毛罕平, 张晓东, 等. 基于时序分析法的温室温度预测模型[J]. 农业机械学报, 2010, 41(11): 173-177.
Zuo Zhiyu, Mao Hanping, Zhang Xiaodong, et al. Forecast model of greenhouse temperature based on time series method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 173-177.
[6]
邹伟东, 张百海, 姚分喜, 等. 基于改进型极限学习机的日光温室温湿度预测与验证[J]. 农业工程学报, 2015, 31(24): 194-200.
Zou Weidong, Zhang Baihai, Yao Fenxi, et al. Verification and forecasting of temperature and humidity in solar greenhouse based on improved extreme learning machine algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 194-200.
[7]
邹秋滢, 纪建伟, 李征明. 基于ANFIS的温室小气候环境因子预测模型辨识[J]. 沈阳农业大学学报, 2014, 45 (4): 503-507.
Zou Qiuying, Ji Jianwei, Li Zhengming. Identification of greenhouse microclimate environmental factors prediction model based on ANFIS [J]. Journal of Shenyang Agricultural University, 2014, 45(4): 503-507.
[8]
徐宇, 冀荣华. 基于复数神经网络的智能温室温度预测研究[J]. 中国农机化学报, 2019, 40(4): 174-178.
Xu Yu, Ji Ronghua. Research on temperature prediction of intelligent greenhouse based on complex neural network [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 174-178.
[9]
陈昕, 唐湘璐, 李想, 等. 二次聚类与神经网络结合的日光温室温度二步预测方法[J]. 农业机械学报, 2017, 48(S1): 353-358.
Chen Xin, Tang Xianglu, Li Xiang, et al. Twosteps prediction method of temperature in solar greenhouse based on twice cluster analysis and neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 353-358.
[10]
Yu H, Chen Y, Hassan S G, et al. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO [J]. Computers and Electronics in Agriculture, 2016, 122: 94-102.
[11]
任守纲, 刘鑫, 顾兴健, 等. 基于R-BP神经网络的温室小气候多部滚动预测模型[J]. 中国农业气象, 2018, 39(5): 314-324.
Ren Shougang, Liu Xin, Gu Xingjian, et al. MultiStep rolling prediction model of greenhouse microclimate based on R-BP Neural Network [J]. Chinese Journal of Agrometeorology, 2018, 39(5): 314-324.
[12]
田东, 韦鑫化, 王悦, 等. 基于MA-ARIMA-GASVR的食用菌温室温度预测[J]. 农业工程学报, 2020, 36(3): 190-197.
Tian Dong, Wei Xinhua, Wang Yue, et al. Prediction of temperature in edible fungi greenhouse based on MA-ARIMA-GASVR [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 190-197.
[13]
Jordan M I. Serial order: A parallel distributed processing approach [J]. ICS-Report 8604 Institute for Cognitive Science University of California, 1986, 121: 64.
[14]
Hochreiter S, Schmidhuber J. Long shortterm memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
[15]
宋刚, 张云峰, 包芳勋, 等. 基于粒子群优化LSTM的股票预测模型[J]. 北京航空航天大学学报, 2019, 45(12): 2533-2542.
Song Gang, Zhang Yunfeng, Bao Fangxun, et a1. Stock prediction model based on particle swarm optimization LSTM [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2533-2542.
[16]
陈英义, 程倩倩, 方晓敏, 等. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J]. 农业工程学报, 2018, 34(17): 183-191.
Chen Yingyi, Cheng Qianqian, Fang Xiaoming, et a1. Principal component analysis and long shortterm memory neural network for predicting dissolved oxygen in water for aquaculture [J]. Transactions of the CSAE, 2018, 34(17): 183-191.
[17]
李泽龙, 杨春节, 刘文辉, 等. 基于LSTM-RNN模型的铁水硅含量预测[J]. 化工学报, 2018, 69(3): 992-997.
Li Zelong, Yang Chunjie, Liu Wenhui, et al. Research on hot metal Sicontent prediction based on LSTM-RNN [J]. CIESC Journal, 2018, 69(3): 992-997.
[18]
王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784.
Wang Xin, Wu Ji, Liu Chao, et al. Exploring LSTM based recurrent neural network for failures time series prediction [J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784.
[19]
白盛楠, 申晓留. 基于LSTM循环神经网络的PM2.5预测[J]. 计算机应用与软件, 2019, 36(1): 67-70, 104.
Bai Shengnan, Shen Xiaoliu. PM2.5 prediction based on LSTM recurrent neural network [J]. Computer Application and Software, 2019, 36(1): 67-70, 104.
[20]
Huan J, Li H, Li M, et al. Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long shortterm memory network: A study of Chang Zhou fishery demonstration base, China [J]. Computers and Electronics in Agriculture, 2020, 175: 105530.
[21]
Chen P, Xiao Q, Zhang J, et al. Occurrence prediction of cotton pests and diseases by bidirectional long shortterm memory networks with climate and atmosphere circulation [J]. Computers and Electronics in Agriculture, 2020, 176: 105612.
[22]
Rui F, Zuo Z, Li L. Using LSTM and GRU neural network methods for traffic flow prediction [C].2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 2016.
[23]
Dhja B, Hsk A, Cj A, et al. Timeserial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse [J]. Computers and Electronics in Agriculture, 2020, 173: 105402.
[24]
赵明珠, 王丹, 方杰, 等. 基于LSTM神经网络的地铁车站温度预测[J]. 北京交通大学学报, 2020, 44(4): 94-101.
Zhao Mingzhu, Wang Dan, Fang Jie, et al. Prediction of subway station temperature based on LSTM neural network [J]. Journal of Beijing Jiaotong University, 2020, 44(4): 94-101.
[25]
智协飞, 王田, 季焱. 基于深度学习的中国地面气温的多模式集成预报研究[J]. 大气科学学报, 2020, 43(3): 435-446.
Zhi Xiefei, Wang Tian, Ji Yan. Multimodel ensemble forecasts of surface air temperature over China based on deep learning approach [J]. Transactions of Atmospheric Sciences, 2020, 43(3): 435-446.
[26]
Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer [J]. Advances in engineering software, 2014, 69: 46-61.
[27]
廖康, 吴益平, 李麟玮, 等. 基于时间序列与GWO-ELM模型的滑坡位移预测[J]. 中南大学学报(自然科学版), 2019, 50(3): 619-626.
Liao Kang, Wu Yiping, Li Linwei, et al. Displacement prediction model of landslide based on time series and GWO-ELM [J]. Journal of Central South University (Science and Technology), 2019, 50(3): 619-626.
[28]
黄文聪, 张宇, 杨远程, 等. 模糊信息粒化和GWO-SVM算法结合的短期风速范围预测[J]. 华侨大学学报(自然科学版), 2020, 41(5): 674-682.
Huang Wencong, Zhang Yu, Yang Yuancheng, et al. Shortterm wind speed range prediction based on fuzzy information granulation and GWO-SVM algorithm [J]. Journal of Huaqiao University (Natural Science), 2020, 41(5): 674-682.
|