[1]
侯水生. 2018年度水禽产业发展现状、未来发展趋势与建议[J]. 中国畜牧杂志, 2019, 55(3): 124-128.
[2]
徐宇, 冀荣华. 基于复数神经网络的智能温室温度预测研究[J]. 中国农机化学报, 2019, 40(4): 174-178.
Xu Yu, Ji Ronghua. Research on temperature prediction of intelligent greenhouse based on complex neural network [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 174-178.
[3]
Nayak J, Naik B, Kanungo D P, et al. A hybrid elicit teaching learning based optimization with fuzzy cmeans algorithm for data clustering [J]. Ain Shams Engineering Journal, 2016.
[4]
欧阳宏佳, 杨博, 陈文俊, 等. 养殖环境主要因子对肉鹅生长性能的影响[J]. 畜牧与兽医, 2019, 51(4): 34-38.
Ouyang Hongjia, Yang Bo, Chen Wenjun, et al. Effects of main factors of breeding environment on growth performance of meat geese [J]. Animal Husbandry & Veterinary Medicine, 2019, 51(4): 34-38.
[5]
Xu Longqin, Liu Shuangyin, Li Diaoliang. Prediction of water temperature in prawn cultures based on a mechanism model optimized by an improved artificial bee colony [J]. Computers and Electronics in Agriculture, 2017(140): 397-408.
[6]
徐龙琴, 张军, 李乾川, 等. 基于EMD和ELM的工厂化育苗水温组合预测模型[J]. 农业机械学报, 2016, 47(4):265-271.
Xu Longqin, Zhang Jun, Li Qianchuan, et al. Combined prediction model of water temperature in industrialized cultivation based on empirical mode decomposition and extreme learning machine [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 265-271.
[7]
Graf R, Zhu Senlin, Sivakumar B. Forecasting river water temperature time series using a waveletneural network hybrid modelling approach [J]. Journal of Hydrology, 2019, 578: 1-12.
[8]
王珺, 卫金茂, 张璐. 基于保留分类信息的多任务特征学习算法[J]. 计算机研究与发展, 2017, 54(3): 537-548.
Wang Jun, Wei Jinmao, Zhang Lu. Multitask feature learning algorithm based on preserving classification information [J]. Journal of Computer Research and Development, 2017, 54(3): 537-548.
[9]
杜晔, 张亚丹, 黎妹红, 等. 基于改进FastICA算法的入侵检测样本数据优化方法[J]. 通信学报, 2016, 37(1): 42-48.
Du Ye, Zhang Yadan, Li Meihong, et al. Improved FastICA algorithm for data optimization processing in intrusion detection [J]. Journal on Communications, 2016, 37(1): 42-48
[10]
仇利克, 郭忠文, 刘青, 等. 基于冗余分析的特征选择算法[J]. 北京邮电大学学报, 2017, 40(1): 36-41.
Qiu Like, Guo Zhongwen, Liu Qing,et al. Feature selection algorithm based on redundancy analysis [J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(1): 36-41.
[11]
孙广路, 宋智超, 刘金来, 等. 基于最大信息系数和近似马尔科夫毯的特征选择方法[J]. 自动化学报, 2017, 43(5):795-805.
Sun Guanglu,Song Zhichao,Liu Jinlai, et al. Feature selection method based on maximum information coefficient and approximate markov blanket [J]. Acta Automatica Sinica, 2017, 43(5): 795-805.
[12]
Teng Xianliang, Gao Zonghe, Zhang Yingyuan, et al. Key technologies and the implementation of wind, PV and storage cogeneration monitoring system [J]. Journal of Modern Power Systems and Clean Energy, 2014, 2(2): 104-113.
[13]
叶林, 陈政, 赵永宁, 等. 基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化, 2015, 39(16): 16-22.
Ye Lin, Chen Zheng, Zhao Yongning, et al. Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network [J]. Automation of Electric Power Systems, 2015, 39(16): 16-22.
[14]
王昕, 黄柯, 郑益慧, 等. 基于PNN/PCA/SS-SVR的光伏发电功率短期预测方法[J]. 电力系统自动化, 2016, 40(17): 156-162.
Wang Xin, Huang Ke, Zheng Yihui, et al. Shortterm forecasting method of photovoltaic output power based on PNN/ PCA/SS-SVR [J]. Automation of Electric Power Systems, 2016, 40(17): 156-162.
[15]
陈英义, 程倩倩, 方晓敏, 等. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J]. 农业工程学报, 2018, 34(17): 183-191.
Chen Yingyi, Cheng Qianqian, Fang Xiaomin, et al. Principal component analysis and long shortterm memory neural network for predicting dissolved oxygen in water for aquaculture [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 34(17): 183-191.
[16]
Mirjalili S, Mirjaliiis M, Lewis A. Grey wolf optimization [J]. Advances in Engineering Software, 2014, 69(7): 46-61.
[17]
向子权, 杨家其, 李慧琳, 等. 基于离散灰狼算法的资源分配问题求解[J]. 华中科技大学学报(自然科学版), 2021, 49(8): 81-85.
Xiang Ziquan, Yang Jiaqi, Li Huilin, et al. A solution to resource allocation problem based on discrete grey wolf optimizer [J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2021, 49(8): 81-85.
[18]
殷豪, 董朕, 陈云龙. 基于CEEMD和膜计算优化支持向量机的风速预测[J]. 电力系统保护与控制, 2017, 45(21): 27-34.
Yin Hao, Dong Zhen, Chen Yunlong. Wind speed forecasting based on complementary ensemble empirical mode decomposition and support vector regression optimized by membrane computing optimization [J]. Power System Protection and Control, 2017, 45(21): 27-34.
[19]
Zhao Z, Wang L, Liu H, et al. On similarity preserving feature selection [J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 25(3): 619-632.
[20]
李怀俊, 谢小鹏. 基于核特征模糊聚类及模糊关联熵的齿轮故障模式识别[J]. 仪器仪表学报, 2015, 36(4): 848-855.
Li Huaijun, Xie Xiaopeng. Gear fault pattern recognition based on kernel feature fuzzy clustering and fuzzy association entropy [J]. Chinese Journal of Scientific Instrument, 2015, 36(4): 848-855.
[21]
刘双印, 黄建德, 徐龙琴, 等. 基于PCA-SVR-ARMA的狮头鹅养殖禽舍气温组合预测模型[J]. 农业工程学报, 2020, 36(11): 225-233.
Liu Shuangyin, Huang Jiande, Xu Longqin, et al. Combined model for prediction of air temperature in poultry house for lionhead goose breeding based on PCA-SVR-ARMA [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 225-233.
|