中国农机化学报 ›› 2023, Vol. 44 ›› Issue (11): 63-72.DOI: 10.13733/j.jcam.issn.2095-5553.2023.11.011
孙成宇,闫建伟,张富贵,苟园旻,徐勇
出版日期:
2023-11-15
发布日期:
2023-12-06
基金资助:
Sun Chengyu, Yan Jianwei, Zhang Fugui, Gou Yuanmin, Xu Yong
Online:
2023-11-15
Published:
2023-12-06
摘要: 蔬菜采摘机器人对蔬菜生产机械化、自动化、智能化具有重要意义。对国内外蔬菜采摘机器人研究现状、关键技术进行总结、分析,包括优化末端执行器提升采摘效率,优化图像处理算法和深度学习模型提高识别精度。并对蔬菜采摘机器人的夹持式、吸持式和仿生式三类末端执行器的特点及适合场景进行分析。分析蔬菜采摘机器人视觉系统的组成结构,对比三种识别方法:传统的图像处理方法基于颜色、纹理特征等;机器学习方法如Kmeans聚类算法和支持向量机SVM算法等;深度学习方法如YOLO、Faster RCNN和SSD网络等。根据不同蔬菜的生长环境及自身特性,归纳出适应的识别方法,并对比识别效果。最后,指出蔬菜采摘机器人在作业对象、作业环境、自身硬件、生产成本方面存在的问题;并在蔬菜种植模式、软件系统、硬件系统以及利用区域特性方面作出展望。
中图分类号:
孙成宇, 闫建伟, 张富贵, 苟园旻, 徐勇. 蔬菜采摘机器人及其关键技术研究进展[J]. 中国农机化学报, 2023, 44(11): 63-72.
Sun Chengyu, Yan Jianwei, Zhang Fugui, Gou Yuanmin, Xu Yong. Research progress of vegetable picking robot and its key technologies[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(11): 63-72.
[1] 刘继展. 温室采摘机器人技术研究进展分析[J]. 农业机械学报, 2017, 48(12): 1-18. Liu Jizhan. Research progress analysis of robotic harvesting technologies in greenhouse [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 1-18. [2] 黄梓宸, Sugiyama Saki. 日本设施农业采收机器人研究应用进展及对中国的启示[J]. 智慧农业(中英文), 2022, 4(2): 135-149. Huang Zichen, Sugiyama Saki. Research progress and enlightenment of Japanese harvesting robot in facility agriculture [J]. Smart Agriculture, 2022, 4(2): 135-149. [3] Du Yuefeng, Fu Shenghui, Mao Enrong, et al. Development situation and prospects of intelligent design for agricultural machinery [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 1-17. [4] Yasukawa S, Li B, Sonoda T, et al. Development of a tomato harvesting robot [C]. 2017 International Conference on Artificial Life and Robotics, Miyazaki. 2017: 408-411. [5] Takuya F, Shinsuke Y, Kazuo I. System development of tomato harvesting robot based on modular design [C]. In: 2019 International Workshop on Smart InfoMedia Systems in Asia: SS1-1. Tokyo, Japan: The Institute of Electronics, Information and Communication Engineers, 2019. [6] 于丰华, 周传琦, 杨鑫, 等. 日光温室番茄采摘机器人设计与试验[J]. 农业机械学报, 2022, 53(1): 41-49. Yu Fenghua, Zhou Chuanqi, Yang Xin, et al. Design of tomato picking robot in solar greenhouse [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 41-49. [7] Chen K, Yang J, Jiang S, et al. Multisensor fusion tomato picking robot localization and mapping research [J]. Journal of Physics: Conference Series, 2023, 2477(1): 012057. [8] Jun J, Seol J, Son H I. A novel endeffector for tomato harvesting robot: Mechanism and evaluation [C]. 2020 20th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2020: 118-121. [9] 古炜豪, 秦广明, 周诗豪, 等. 基于双目定位的番茄采摘系统设计[J]. 中国农机化学报, 2016, 37(11): 135-138. Gu Weihao, Qin Guangming, Zhou Shihao, et al. Design of tomato picking system based on binocular positioning [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(11): 135-138. [10] 朱智惟, 单建华, 余贤海, 等. 基于YOLOv5s的番茄采摘机器人目标检测技术[J]. 传感器与微系统, 2023, 42(6): 129-132.Zhu Zhiwei, Shan Jianhua, Yu Xianhai, et al. Target detection technology of tomato picking robot based on YOLOv5s [J]. Transducer and Microsystem Technologies, 2023, 42(6): 129-132. [11] Van Henten E J, Van Tuijl B A J, Hemming J, et al. Field test of an autonomous cucumber picking robot [J]. Biosystems Engineering, 2003, 86(3): 305-313. [12] Park Y, Seol J, Pak J, et al. Humancentered approach for an efficient cucumber harvesting robot system: Harvest ordering, visual servoing, and endeffector [J]. Computers and Electronics in Agriculture, 2023, 212: 108116. [13] 张燕军, 吴华昕, 苏伟, 等. 气力驱动的黄瓜梗剪切装置设计与试验[J]. 中国农机化学报, 2021, 42(2): 101-108. Zhang Yanjun, Wu Huaxin, Su Wei, et al. Design and experiment of pneumatic cutting device for cucumber stalk [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 101-108. [14] Hu Xiaomei, W Chuan, Y Tao. Design and application of visual system in the Agaricus bisporus picking robot [A]. 2018 International Symposium on Power Electronics and Control Engineering (ispece 2018)[C]. Bristol: Iop Publishing Ltd, 2019, 1187: 032034. [15] 王玲, 徐伟, 杜开炜, 等. 基于SR300深度相机的褐蘑菇原位测量技术[J]. 农业机械学报, 2018, 49(12): 13-19, 108. Wang Ling, Xu Wei, Du Kaiwei, et al. Portabella mushrooms measurement in situ based on SR300 depth camera [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 13-19, 108. [16] 周云山, 李强, 李红英, 等. 计算机视觉在蘑菇采摘机器人上的应用[J]. 农业工程学报, 1995(4): 27-32.Zhou Yunshan, Li Qiang, Li Hongying, et al. Application of computer vision in mushroom picking robot [J]. Transactions of the Chinese Society of Agricultural Engineering, 1995(4): 27-32. [17] 杨千. 平菇采摘机器人目标识别与定位控制关键技术研究[D]. 苏州: 苏州大学, 2020.Yang Qian. Research on key technology of target recognition and positioning control of pleurotus ostreatus picking robot [D]. Suzhou: Soochow University, 2020. [18] Hayashi S, Ganno K, Ishii Y, et al. Development of a harvesting endeffector for eggplants.[J]. Shokubutsu Kojo Gakkaishi, 2001, 13(2): 97-103. [19] Hayashi S, Ganno K, Ishii Y, et al. Robotic harvesting system for eggplants [J]. Japan Agricultural Research Quarterly: JARQ, 2002, 36(3): 163-168. [20] Sepulveda D, Fernandez R, Navas E, et al. Robotic aubergine harvesting using dualarm manipulation [J]. IEEE Access, 2020, 8: 121889-121904. [21] 宋健, 王凯, 张晓琛. 茄子采摘机器人目标识别与测距方法[J]. 实验室研究与探索, 2015, 34(9): 54-57.Song Jian, Wang Kai, Zhang Xiaochen. A target recognition and ranging method for eggplant picking robot [J]. Research and Exploration in Laboratory, 2015, 34(9): 54-57. [22] 苑进. 选择性收获机器人技术研究进展与分析[J]. 农业机械学报, 2020, 51(9): 1-17. Yuan Jin. Research progress analysis of robotics selective harvesting technologies [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 1-17. [23] 李国利, 姬长英, 翟力欣. 果蔬采摘机器人末端执行器研究进展与分析[J]. 中国农机化学报, 2014, 35(5): 231-236, 240. Li Guoli, Ji Changying, Zhai Lixin. Research progress and analysis of endeffector for fruits and vegetables picking robot [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(5): 231-236, 240 [24] Avigad G, Salomon S, Kahani A, et al. Robotic fruit harvesting machine with fruitpair picking and hybrid motorized pneumatic robot arms [P]. US Patent: 11477942, 2022-10-25. [25] 彭艳, 刘勇敢, 杨扬, 等. 软体机械手爪在果蔬采摘中的应用研究进展[J]. 农业工程学报, 2018, 34(9): 11-20. Peng Yan, Liu Yonggan, Yang Yang, et al. Research advances in the application of soft robotic grippers for fruit and vegetable picking [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 11-20. [26] 纪超, 冯青春, 袁挺, 等. 温室黄瓜采摘机器人系统研制及性能分析[J]. 机器人, 2011, 33(6): 726-730.Ji Chao, Feng Qingchun, Yuan Ting, et al. Development and performance analysis on cucumber harvesting robot system in greenhouse [J]. Robot, 2011, 33(6): 726-730. [27] 陈子文, 杨明金, 李云伍, 等. 基于气动无损夹持控制的番茄采摘末端执行器设计与试验[J]. 农业工程学报, 2021, 37(2): 27-35. Chen Ziwen, Yang Mingjin, Li Yunwu, et al. Design and experiment of tomato picking endeffector based on nondestructive pneumatic clamping control [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 27-35. [28] 钱少明, 杨庆华, 王志恒, 等. 黄瓜抓持特性与末端采摘执行器研究[J]. 农业工程学报, 2010, 26(7): 107-112. Qian Shaoming, Yang Qinghua, Wang Zhiheng, et al. Research on holding characteristics of cucumber and endeffector of cucumber picking [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 107-112. [29] 刘继展, 李萍萍, 李智国. 番茄采摘机器人末端执行器的硬件设计[J]. 农业机械学报, 2008(3): 109-112. Liu Jizhan, Li Pingping, Li Zhiguo. Hardware design of the endeffector for tomatoharvesting robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2008(3): 109-112. [30] 刘子娟, 费健, 付庄, 等. 仿生蛇嘴的机构原理与设计[A]. 2011年中国智能自动化学术会议论文集(第一分册)[C]. 中国自动化学会智能自动化专业委员会, 2011: 485-489. [31] 王毅, 许洪斌, 张茂, 等. 仿蛇嘴咬合式柑橘采摘末端执行器设计与实验[J]. 农业机械学报, 2018, 49(10): 54-64. Wang Yi, Xu Hongbin, Zhang Mao, et al. Design and experiment of bitemodel endeffector for citrus harvesting by simulating with mouth of snake [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 54-64. [32] Quan Longzhe, Zhao Lin, Li Xinghui, et al. Design and test of multifunctional dragonfly claws form biomimetic end effector [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8). [33] 魏博, 何金银, 石阳, 等. 欠驱动式柑橘采摘末端执行器设计与试验[J]. 农业机械学报, 2021, 52(10): 120-128. Wei Bo, He Jinyin, Shi Yang, et al. Design and experiment of underactuated endeffector for citrus picking [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 120-128. [34] 雷翔鹏, 刘业峰. 欠驱动多指机械手抓取能力分析与优化研究[J]. 控制工程, 2022, 29(4): 730-737. Lei Xiangpeng, Liu Yefeng. Research and optimization design of grasping capability for underactuated multifinger manipulator [J]. Control Engineering of China, 2022, 29(4): 730-737. [35] 刘林, 苑进, 张岩, 等. 日光温室基质培生菜鲜质量无损估算方法[J]. 农业机械学报, 2021, 52(9): 230-240. Liu Lin, Yuan Jin, Zhang Yan, et al. Nondestructive estimation method for fresh weight of substrate cultured lettuce in a solar greenhouse [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 230-240. [36] 彭红星, 邹湘军, 陈丽娟, 等. 基于双次Otsu算法的野外荔枝多类色彩目标快速识别[J]. 农业机械学报, 2014, 45(4): 61-68, 75. Peng Hongxing, Zou Xiangjun, Chen Lijuan, et al. Fast recognition of multi color objects in Litchi field based on double Otsu algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 61-68, 75. [37] Lin G, Tang Y, Zou X, et al. Guava detection and pose estimation using a lowcost RGBD sensor in the field [J]. Sensors, Basel: Mdpi, 2019, 19(2): 428. [38] Moallem P, Serajoddin A, Pourghassem H. Computer visionbased apple grading for golden delicious apples based on surface features [J]. Information Processing in Agriculture, 2017, 4(1): 33-40. [39] Wang C, Tang Y, Zou X, et al. A robust fruit image segmentation algorithm against varying illumination for vision system of fruit harvesting robot [J]. Optik, Jena: Elsevier Gmbh, Urban & Fischer Verlag, 2017, 131: 626-631. [40] Wang C, Zou X, Tang Y, et al. Localisation of litchi in an unstructured environment using binocular stereo vision [J]. Biosystems Engineering, San Diego: Academic Press Inc Elsevier Science, 2016, 145: 39-51. [41] Ji W, Zhao D, Cheng F, et al. Automatic recognition vision system guided for apple harvesting robot [J]. Computers & Electrical Engineering, Oxford: PergamonElsevier Science Ltd, 2012, 38(5): 1186-1195. [42] Chen S W, Shivakumar S S, Dcunha S, et al. Counting apples and oranges with deep learning: a datadriven approach [J]. Ieee Robotics and Automation Letters, Piscataway: IeeeInst Electrical Electronics Engineers Inc, 2017, 2(2): 781-788. [43] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation [J]. Ieee Transactions on Pattern Analysis and Machine Intelligence, Los Alamitos: Ieee Computer Soc, 2017, 39(4): 640-651. [44] 吕小莲, 吕小荣, 卢秉福. 基于颜色信息的采摘西红柿识别方法[J]. 计算机工程, 2010, 36(11): 178-179, 182. Lü Xiaolian, Lü Xiaorong, Lu Bingfu. Identification methods of picking tomatoes based on color information [J]. Computer Engineering, 2010, 36(11): 178-179, 182. [45] Chaivivatrakul S, Dailey M N. Texturebased fruit detection [J]. Precision Agriculture, Dordrecht: Springer, 2014, 15(6): 662-683. [46] Payne A B, Walsh K B, Subedi P P, et al. Estimation of mango crop yield using image analysissegmentation method [J]. Computers and Electronics in Agriculture, 2013, 91: 57-64. [47] Luo L, Tang Y, Zou X, et al. Robust grape cluster detection in a vineyard by combining the AdaBoost framework and multiple color components [J]. Sensors, Basel: Mdpi, 2016, 16(12): 2098. [48] 李寒, 张漫, 高宇, 等. 温室绿熟番茄机器视觉检测方法[J]. 农业工程学报, 2017, 33(S1): 328-334, 388. Li Han, Zhang Man, Gao Yu, et al. Green ripe tomato detection method based on machine vision in greenhouse [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(S1): 328-334. [49] Lü Qiang, Cai Jianrong, Liu Bin, et al. Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine [J]. International Journal of Agricultural and Biological Engineering, 2014, 7(2): 115-121. [50] Sengupta S, Lee W S. Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions [J]. Biosystems Engineering, 2014, 117: 51-61. [51] 张宏鸣, 付振宇, 韩文霆, 等. 基于改进YOLO的玉米幼苗株数获取方法[J]. 农业机械学报, 2021, 52(4):221-229. Zhang Hongming, Fu Zhenyu, Han Wenting, et al. Detection method of maize seedlings number based on improved YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 221-229. [52] 郭瑞, 于翀宇, 贺红, 等. 采用改进YOLOv4算法的大豆单株豆荚数检测方法[J]. 农业工程学报, 2021, 37(18): 179-187. Guo Rui, Yu Chongyu, He Hong, et al. Detection method of soybean pod number per plant using improved YOLOv4 algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 179-187. [53] 彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J]. 农业工程学报, 2018, 34(16): 155-162. Peng Hongxing, Huang Bo, Shao Yuanyuan, et al. General improved SSD model for picking object recognition of multiple fruits in natural environment [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 155-162. [54] 杜玉红, 董超群, 赵地, 等. 改进Faster RCNN模型在棉花异性纤维识别中的应用[J]. 激光与光电子学进展, 2020, 57(12): 132-141. Du Yuhong, Dong Chaoqun, Zhao Di, et al. Application of improved Faster RCNN model for foreign fiber identification in cotton [J]. Laser & Optoelectronics Progress, 2020, 57(12): 132-141. [55] Lin G, Tang Y, Zou X, et al. Guava detection and pose estimation using a lowcost RGBD sensor in the field [J]. Sensors, Basel: Mdpi, 2019, 19(2): 428. [56] Barth R, Hemming J, Van Henten E J. Angle estimation between plant parts for grasp optimisation in harvest robots [J]. Biosystems Engineering, San Diego: Academic Press Inc Elsevier Science, 2019, 183: 26-46. [57] Yu Y, Zhang K, Yang L, et al. Fruit detection for strawberry harvesting robot in nonstructural environment based on MaskRCNN [J]. Computers and Electronics in Agriculture, Oxford: Elsevier Sci Ltd, 2019, 163: 104846. |
[1] | 杨伟, 唐涛, 俞高红, , 杜成成, 叶秉良, . 开沟式植苗机构钵体低损接苗机理与试验研究[J]. 中国农机化学报, 2023, 44(9): 9-15. |
[2] | 王焱清, , 汤旸, 杨光友, . 面向机器人柑橘采摘的控制系统设计与试验[J]. 中国农机化学报, 2023, 44(9): 146-153. |
[3] | 王大明, 何逸霏, 李华英, 苟于江, 何辉波. 柑橘采摘机器人图像识别算法研究[J]. 中国农机化学报, 2023, 44(9): 222-226. |
[4] | 孙正, 薛龙, 何梁, 刘木华, 黎静, 郑建鸿. 辣椒穴盘苗自动取投苗装置设计与试验[J]. 中国农机化学报, 2023, 44(7): 48-54. |
[5] | 王志彬, 傅杨, 乔晓军, 卫雅娜, , 何雨伦. 臭氧植保机在设施蔬菜苗期病害防治中的应用研究[J]. 中国农机化学报, 2023, 44(7): 55-62. |
[6] | 唐楠锐, , 陈立明, , 刘婉茹, , 刘浩蓬, , 张国忠, . 荸荠去皮技术研究进展与发展趋势[J]. 中国农机化学报, 2023, 44(7): 101-110. |
[7] | 魏松, 苟园旻, 闫建伟. 贵州省蔬菜机械化发展现状与策略[J]. 中国农机化学报, 2023, 44(7): 254-263. |
[8] | 戴有华, 吴丹, 金文忻, 刘旭. 设施蔬菜生产无人开沟施肥机设计与试验[J]. 中国农机化学报, 2023, 44(11): 43-49. |
[9] | 寇雷雷, 张红娜. 基于改进YOLOv5的苹果采摘机器人多目标识别技术研究[J]. 中国农机化学报, 2023, 44(11): 162-168. |
[10] | 张日红, 欧炬基, 丁力行, 李小敏, 林桂潮, 钟建鸣. 基于视觉定位的串并混联型百香果采摘机器人研究[J]. 中国农机化学报, 2023, 44(10): 209-210. |
[11] | 王江, 李浩, 马志伟, 郝建军, 刘文科. 国内外设施蔬菜机械化发展现状分析及对策[J]. 中国农机化学报, 2023, 44(1): 124-130. |
[12] | 姬丽雯, , 刘永华, , 高菊玲, , 吴丹, . 温室草莓采摘机器人设计与试验[J]. 中国农机化学报, 2023, 44(1): 192-198. |
[13] | 崔志超, 管春松, 徐陶, 杨雅婷, 许斌星, 陈永生. 基质块育苗移栽技术与装备发展现状[J]. 中国农机化学报, 2022, 43(5): 29-34. |
[14] | 林云龙, 杨发展, 李维华, . 基于专利分析法的生姜机械化种植技术研究进展分析[J]. 中国农机化学报, 2022, 43(4): 90-97. |
[15] | 袁益明, 张寒波, 岳崇勤. 对蔬菜机械化推广工作的一点思考[J]. 中国农机化学报, 2022, 43(4): 223-228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296