[1]
Avinash C. Tyagi. Towards a second green revolution [J]. Irrigation and Drainage, 2016, 65(4): 388-389.
[2]
张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17.
[3]
杨娟娟, 高晓阳, 李红岭, 等. 基于机器视觉的无人机避障系统研究[J]. 中国农机化学报, 2020, 41(2): 155-160.
[4]
闫建伟, 赵源, 张乐伟, 等. 基于残差网络的自然环境中刺梨果实的识别[J]. 中国农机化学报, 2020, 41(10): 191-196.
[5]
蒲秀夫, 宁芊, 雷印杰, 等. 基于二值化卷积神经网络的农业病虫害识别[J]. 中国农机化学报, 2020, 41(2): 177-182.
[6]
Luna R, Dadios E P, Bandala A A. Automated image capturing system for deep learningbased tomato plant leaf disease detection and recognition [C]. TENCON 2018-2018 IEEE Region 10 Conference. IEEE, 2019.
[7]
Durmu瘙塂 H, Güne瘙塂 E O, Krc M. Disease detection on the leaves of the tomato plants by using deep learning [C]. 2017 6th International Conference on AgroGeoinformatics. IEEE, 2017: 1-5.
[8]
Darwish A, Ezzat D, Hassanien A E. An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis[J]. Swarm and Evolutionary Computation, 2020, 52: 100616.
[9]
Zhang X, Qiao Y, Meng F, et al. Identification of maize leaf diseases using improved deep convolutional neural networks [J]. IEEE Access, 2018, 6: 30370-30377.
[10]
Lü M, Zhou G, He M, et al. Maize leaf disease identification based on feature enhancement and DMS-Robust Alexnet [J]. IEEE Access, 2020, 8: 57952-57966.
[11]
Ramcharan A, Baranowski K, McCloskey P, et al. Deep learning for imagebased cassava disease detection [J]. Frontiers in Plant Science, 2017, 8: 1852.
[12]
Lu Yang, Yi Shujuan, Zeng Nianyin, et al. Identification of rice diseases using deep convolutional neural networks [J]. Neurocomputing, 2017, 267: 378-384.
[13]
Lin Z, Mu S, Huang F, et al. A unified matrixbased convolutional neural network for finegrained image classification of wheat leaf diseases [J]. IEEE Access, 2019, 7: 11570-11590.
[14]
Liu Bin, Zhang Yun, He Dongjian, et al. Identification of apple leaf diseases based on deep convolutional neural networks [J]. Symmetry, 2017, 10(1): 11.
[15]
黄亦其, 刘琪, 赵建晔, 等. 基于深度卷积神经网络的红树林物种无人机监测研究[J]. 中国农机化学报, 2020, 41(2): 141-146, 189.
Huang Yiqi, Liu Qi, Zhao Jianye, et al. Research on unmanned aerial surveillance of mangrove species based on deep convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 141-146, 189.
[16]
孙鹏, 陈桂芬, 曹丽英. 基于注意力卷积神经网络的大豆害虫图像识别[J]. 中国农机化学报, 2020, 41(2): 171-176.
Sun Peng, Chen Guifen, Cao Liying. Image recognition of soybean pests based on attention convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 171-176.
[17]
He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks [C]. European conference on computer vision. Springer, Cham, 2016.
[18]
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[19]
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[20]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
[21]
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
[22]
Szegedy C, Ioffe S, Vanhoucke V, et al. Inceptionv4, InceptionResNet and the impact of residual connections on learning [J]. arXiv preprint arXiv: 1602.07261, 2016.
[23]
Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint arXiv: 1704.04861, 2017.
[24]
Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[25]
Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3 [C]. Proceedings of the IEEE International Conference on Computer Vision, 2019: 1314-1324.
[26]
Chollet F. Xception: Deep learning with depthwise separable convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[27]
Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient CNN architecture design [C]. Proceedings of the European Conference on Computer Vision, 2018: 116-131.
|