[1]
鲍文霞, 孙庆, 胡根生, 等. 基于多路卷积神经网络的大田小麦赤霉病图像识别[J]. 农业工程学报, 2020, 36(11): 174-181.
Bao Wenxia, Sun Qing, Hu Gensheng, et al. Image recognition of field wheat scab based on multiway convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 174-181.
[2]
张健, 崔继承, 刘晓梅, 等. 短波红外成像光谱技术在小麦赤霉病检测中的应用[J]. 光学技术, 2019, 45(5): 552-556.
Zhang Jian, Cui Jicheng, Liu Xiaomei, et al. The technology of shortwave infrared imaging spectroscopy applied to detecting wheat scab [J].Optical Technique, 2019, 45(5): 552-556.
[3]
梁琨, 杜莹莹, 卢伟, 等. 基于高光谱成像技术的小麦籽粒赤霉病识别[J]. 农业机械学报, 2016, 47(2): 309-315.
Liang Kun, Du Yingying, Lu Wei, et al. Identification of fusarium head blight wheat based on hyperspectral imaging technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 309-315.
[4]
刘爽, 谭鑫, 刘成玉, 等. 高光谱数据处理算法的小麦赤霉病籽粒识别[J]. 光谱学与光谱分析, 2019, 39(11): 3540-3546.
Liu Shuang, Tan Xin, Liu Chengyu, et al. Recognition of fusarium head blight wheat grain based on hyperspectral data processing algorithm [J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3540-3546.
[5]
Barbedo J G A, Tibola C S, Fernandes J M C. Detecting Fusarium head blight in wheat kernels using hyperspectral imaging [J]. Biosystems Engineering, 2015, 131: 65-76.
[6]
Ropelewska E, Zapotoczny P. Classification of Fusariuminfected and healthy wheat kernels based on features from hyperspectral images and flatbed scanner images: A comparative analysis [J]. European Food Research & Technology, 2018, 244(8): 1453-1462.
[7]
Bauriegel E, Giebel A, Geyer M, et al. Early detection of fusarium infection in wheat using hyperspectral imaging [J]. Computers & Electronics in Agriculture, 2011, 75(2): 304-312.
[8]
Jin X, Jie L, Wang S, et al. Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field [J]. Remote Sensing, 2018, 10(3): 395.
[9]
刁智华, 袁万宾, 罗雅雯, 等. 基于图像处理的小麦白粉病病斑生长模型构建[J]. 中国农机化学报, 2019, 40(6): 158-161.
Diao Zhihua, Yuan Wanbin, Luo Yawen, et al. Construction of wheat powdery mildew lesion growth model based on image processing [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(6): 158-161.
[10]
张开兴, 吕高龙, 贾浩, 等. 基于图像处理和BP神经网络的玉米叶部病害识别[J]. 中国农机化学报, 2019, 40(8): 122-126.
Zhang Kaixing, Lü Gaolong, Jia Hao, et al. Identification of corn leaf disease based on image processing and BP neural network [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(8): 122-126.
[11]
顾博, 邓蕾蕾, 李巍, 等. 基于GrabCut算法的玉米病害图像识别方法研究[J]. 中国农机化学报, 2019, 40(11): 143-149.
Gu Bo, Deng Leilei, Li Wei, et al. Researvh on maize disease image recognition method based on GrabCut algorithms [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11): 143-149.
[12]
Qiu Ruicheng, Yang Ce, Moghimi A, et al. Detection of fusarium head blight in wheat using a deep neural network and color imaging [J]. Remote Sensing, 2019, 11(22): 2658.
[13]
王云艳, 罗冷坤, 王重阳. Deeplab网络的极化合成孔径雷达图像分类[J]. 测绘科学, 2020, 45(6): 110-117.
Wang Yunyan, Luo Lengkun, Wang Chongyang. PolSAR image classification based on Deeplab network [J]. Science of Surveying Mapping, 2020, 45(6): 110-117.
[14]
王云艳, 罗冷坤, 周志刚. 改进型DeepLab的极化SAR果园分类[J]. 中国图象图形学报, 2019, 24(11): 2035-2044.
Wang Yunyan, Luo Lengkun, Zhou Zhigang. Polarized SAR orchard classification based on improved DeepLab [J]. Journal of Image and Graphics, 2019, 24(11): 2035-2044.
[15]
刘文祥, 舒远仲, 唐小敏, 等. 采用双注意力机制Deeplabv3+算法的遥感影像语义分割[J]. 热带地理, 2020, 40(2): 303-313.
Liu Wenxiang, Shu Yuanzhong, Tang Xiaomin, et al. Remote sensing image segmentation using dual attention mechanism Deeplabv3+ algorithm [J]. Tropical Geography, 2020, 40(2): 303-313.
[16]
袁立, 袁吉收, 张德政. 基于DeepLabv3+的遥感影像分类[J]. 激光与光电子学进展, 2019, 56(15): 1-8.
Yuan Li, Yuan Jishou, Zhang Dezheng. Remte sensing image classification based on DeepLabv3+ [J]. Laser & Optoelectronics Progress, 2019, 56(15): 1-8.
[17]
刘文雅, 岳安志, 季珏, 等. 基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取[J]. 国土资源遥感, 2020, 32(2): 120-129.
Liu Wenya, Yue Anzhi, Ji Jue, et al. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model [J]. Remote Sensing for Land and Resource, 2020, 32(2): 120-129.
[18]
王振华, 钟元芾, 何婉雯, 等. 改进Deeplab网络的遥感影像海岛岸线分割[J]. 中国图象图形学报, 2020, 25(4): 768-778.
Wang Zhenhua, Zhong Yuanfei, He Wanwen, et al. Island shoreline segmentation in remote sensing image based on improved Deeplab network [J]. Journal of Image and Graphics, 2020, 25(4): 768-778.
[19]
任凤雷, 何昕, 魏仲慧, 等. 基于DeepLabV3+与超像素优化的语义分割[J]. 光学精密工程, 2019, 27(12): 2722-2729.
Ren Fenglei, He Xin, Wei Zhonghui, et al. Semantic segmentation based on DeepLabV3+ and superpixel optimization [J]. Optics and Precision Engineering, 2019, 27(12): 2722-2729.
[20]
丁串龙. 基于高光谱数据的小麦赤霉病遥感监测 [D]. 合肥: 安徽大学, 2020.
Ding Chuanlong. Remote sensing monitoring of wheat scab based on hyperspectral data [D]. Hefei: Anhui University, 2020.
[21]
Zhang N, Pan Y, Feng H, et al. Development of Fusarium head blight classification index using hyperspectral microscopy images of winter wheat spikelets [J]. Biosystems Engineering, 2019, 186: 83-99.
|