[1] 曾锦, 祁雁楠, 徐陶, 等. 我国规模化果园有机废弃物资源化利用研究现状[J]. 江苏农业科学, 2023, 51(4): 1-8.
[2] 赵映, 肖宏儒, 梅松, 等. 我国果园机械化生产现状与发展策略[J]. 中国农业大学学报, 2017, 22(6): 116-127.
Zhao Ying, Xiao Hongru, Mei Song, et al. Current status and development strategies of orchard mechanization production in China [J]. Journal of China Agricultural University, 2017, 22(6): 116-127.
[3] 崇兴花. 果园机械化生产技术研究进展[J]. 农业机械, 2021, 883(7): 80-82.
[4] 赵峰. 不同耕作方式对黄陵苹果园地力影响调查[J]. 西北园艺(果树), 2022, 304(5): 57-59.
[5] Shi W Y, Yan M J, Zhang J G, et al. Soil CO2 emissions from five different types of land use on the semiarid Loess Plateau of China, with emphasis on the contribution of winter soil respiration [J]. Atmospheric Environment, 2014, 88: 74-82.
[6] 韩佳乐, 郝珊, 刘振杰, 等. 黄土高原地区两种土地利用方式CO2和N2O排放特征[J]. 环境科学, 2019, 40(11): 5164-5172.
Han Jiale, Hao Shan, Liu Zhenjie, et al. Characteristics of CO2 and N2O emissions under two land use types in the Loess Plateau of China [J]. Environmental Science, 2019, 40(11): 5164-5172.
[7] 韩双颖, 高兵, 赵川, 等. 中国不同水果生产系统温室气体排放及减排措施[J]. 南京信息工程大学学报(自然科学版), 2022, 14(4): 389-398.
Han Shuangying, Gao Bing, Zhao Chuan, et al. Greenhouse gas emission and its mitigation measures of different orchard production systems in China [J]. Journal of Nanjing University of Information Science & Technology, 2022, 14(4): 389-398.
[8] 顾江新, 郭艳杰, 张丽娟, 等. 果树种植土壤N2O排放研究: 认识与挑战[J]. 农业环境科学学报, 2020, 39(4): 726-731.
Gu Jiangxin, Guo Yanjie, Zhang Lijuan, et al. Soil N2O emissions from orchards: Current status and challenges [J]. Journal of AgroEnvironment Science, 2020, 39(4): 726-731.
[9] Pang J Z, Wang X K, Peng C H, et al. Nitrous oxide emissions from soils under traditional cropland and apple orchard in the semiarid Loess Plateau of China [J]. Agriculture,Ecosystems & Environment, 2019, 269: 116-124.
[10] 张绍铃, 伍涛, 陶书田, 等. 图解梨优质安全生产技术要领(第二版)[M]. 北京: 中国农业出版社, 2022.
[11] 朱春燕, 范良俊, 范涛, 等. 上海地区桃、梨果园施肥机械使用情况调研分析[J]. 现代农业装备, 2023, 44(5): 68-71.
Zhu Chunyan, Fan Liangjun, Fan Tao, et al. The investigation and analysis on the use of fertilizer machinery in peach and pear orchards in Shanghai [J]. Modern Agricultural Equipment, 2023, 44(5): 68-71.
[12] 朱新华, 赵怀松, 伏胜康, 等. 猕猴桃果园有机肥免开沟施肥机设计与试验[J]. 农业机械学报, 2023, 54(9): 133-142.
Zhu Xinhua, Zhao Huaisong, Fu Shengkang, et al. Design and test of applicator for kiwifruit orchards to mix organic fertilizer into soil without furrowing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(9): 133-142.
[13] 王得伟, 李平, 弋晓康, 等. 果园施肥工艺流程和相关机械应用现状与发展趋势[J]. 果树学报, 2021, 38(5): 792-805.
Wang Dewei, Li Ping, Yi Xiaokang, et al. Current situation and countermeasures in fertilization process and related machinery application in orchard [J]. Journal of Fruit Science, 2021, 38(5): 792-805.
[14] 陆岱鹏, 陶建平, 马艳, 等. 土壤连作障碍综合消减装备设计与试验[J]. 江苏农业科学, 2019, 47(20): 241-247.
[15] 刘双喜, 张宏建, 王金星, 等. 果园开沟施肥机导肥机构的优化设计[J]. 中国农机化学报, 2017, 38(7): 45-53.
Liu Shuangxi, Zhang Hongjian, Wang Jinxing, et al. Optimization design of fertilizerguiding mechanism for orchard ditching and fertilizing machine [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(7): 45-53.
[16] 郭振华, 陈换美, 伊海涛, 等. 果园施肥机械研究现状与展望[J]. 新疆农机化, 2019(6): 22-25, 31.Guo Zhenhua, Chen Huanmei, Yi Haitao, et al. Research and prospect of the status quo of fertilization machinery in orchard [J]. Xinjiang Agricultural Mechanization, 2019(6): 22-25, 31.
[17] 李同玺, 张猛强, 牛浩, 等.果园施肥机关键技术研究现状与展望[J]. 新疆农机化, 2023(3): 24-26.Li Tongxi, Zhang Mengqiang, Niu Hao, et al. Research status and prospect of key technology of orchard fertilizer [J]. Xinjiang Agricultural Mechanization, 2023(3): 24-26.
[18] 方玉婷, 张宏, 刘文亮, 等.浅谈果园开沟施肥机的研究现状[J]. 新疆农机化, 2019(5): 16-19.Fang Yuting, Zhang Hong, Liu Wenliang, et al. The research status of orchard furrow fertilizer machine [J]. Xinjiang Agricultural Mechanization, 2019(5): 16-19.
[19] 刘双喜, 徐春保, 张宏建, 等. 果园基肥施肥装备研究现状与发展分析[J]. 农业机械学报, 2020, 51(S2): 99-108.
Liu Shuangxi, Xu Chunbao, Zhang Hongjian, et al. Research statusand development analysis of basefertilizer application equipment of orchard [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 99-108.
[20] 吕晓兰. 中国梨园全程机械化发展现状及建议[J]. 落叶果树, 2024, 56(1): 1-5, 105.
Lü Xiaolan. Problems and development suggestions of wholly mechanized production of pear orchards in China [J]. Deciduous Fruits, 2024, 56(1): 1-5, 105.
[21] 肖宏儒, 赵映, 丁文芹, 等. 1KS60-35X型果园双螺旋开沟施肥机刀轴设计与试验[J]. 农业工程学报, 2017, 33(10): 32-39.
Xiao Hongru, Zhao Ying, Ding Wenqin, et al. Design and experiment on blade shaft of 1KS60-35X type orchard doublehelix trenching and fertilization machine [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 32-39.
[22] 王京风. 微型果园开沟机的设计分析与优化[D]. 杨凌: 西北农林科技大学, 2010.
[23] Pan S G, Wen X C, Wang Z M, et al. Benefits of mechanized deep placement of nitrogen fertilizer in directseeded rice in south China [J]. Field Crops Research, 2017, 203: 139-149.
[24] Chen H, Li X, Hu F, et al. Soil nitrous oxide emissions following crop residue addition: A metaanalysis [J]. Global Change Biology, 2013, 19(10): 2956-2964.
[25] 肖霜霜, 叶莹莹, 陈武荣, 等. 翻耕扰动下喀斯特耕地N2O排放规律及影响因素[J]. 农业现代化研究, 2022, 43(4): 738-746.
Xiao Shuangshuang, Ye Yingying, Chen Wurong, et al. N2O emission law and its affecting factors under tillage disturbance in cultivated land of Karst region [J]. Research of Agricultural Modernization, 2022, 43(4): 738-746.
[26] 马艳婷, 赵志远, 冯天宇, 等. 有机无机肥配施对苹果园温室气体排放的影响[J]. 农业环境科学学报, 2021, 40(9): 2039-2048.
Ma Yanting, Zhao Zhiyuan, Feng Tianyu, et al. Greenhouse gas emissions from an apple orchard with the mixed application of organic and chemical fertilizers [J]. Journal of AgroEnvironment Science, 2021, 40(9): 2039-2048.
[27] Gao Y, Cabrera Serrenho A. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to onefifth of current levels by 2050 with combined interventions [J]. Nature Food, 2023, 4(2): 170-178.
[28] Chen X, Xu X, Lu Z, et al. Carbon footprint of a typical pomelo production region in China based on farm survey data [J]. Journal of Cleaner Production, 2020, 277: 124041.
[29] Liu H, Li Y, Pan B, et al. Pathways of soil N2O uptake, consumption, and its driving factors:A review [J]. Environmental Science and Pollution Research, 2022, 29(21): 30850-30864.
[30] Cheng Y, Wang J, Chang S X, et al. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: A review [J]. Environmental Pollution, 2019, 244: 608-616.
[31] 杨悦. 果园土壤微生物多样性影响因素研究[J]. 中国林副特产, 2022, 179(4): 75-78.
[32] Tian J, Dungait J A.J, Hou R X, et al. Microbially mediated mechanismsunderlie soil carbon accrual by conservation agriculture under decadelong warming [J].Nature Communications, 2024, 15(1): 377.
[33] 邓利廷, 佟天奇, 葛菁萍. 不同果园土壤微生物分布与生态因子的冗余分析[J]. 中国农学通报, 2017, 33(9): 41-47.
Deng Liting, Tong Tianqi, Ge Jingping. Redundancy analysis between microbes distribution and ecological factors in different orchard soil [J]. Chinese Agricultural Science Bulletin, 2017, 33(9): 41-47.
[34] Wu X, Liu H F, Fu B J, et al. Effects of landuse change and fertilization on N2O and NO fluxes, the abundance of nitrifying and denitrifying microbial communities in a hilly red soil region of southern China [J]. Applied Soil Ecology, 2017, 120: 111-120.
[35] Prosser J I, Hink L, GubryRangin C, et al. Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies [J]. Global Change Biology, 2020, 26(1): 103-118.
|