[1] Liu J, Yang Y, He H. Multi-level semantic representation enhancement network for relationship extraction [J]. Neurocomputing, 2020, 403: 282-293.
[2] 张善文, 王振, 王祖良. 结合知识图谱与双向长短时记忆网络的小麦条锈病预测[J]. 农业工程学报, 2020, 36(12): 172-178.
Zhang Shanwen, Wang Zhen, Wang Zuliang.Prediction of wheat stripe rust disease by combining knowledge graph and bidirectional long short term memory network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 172-178.
[3] Do P, Phan T H V. Developing a BERT based triple classification model using knowledge graph embedding for question answering system [J]. Applied Intelligence, 2022, 52(1): 636-651.
[4] 郑丽敏, 齐珊珊, 田立军, 等. 面向食品安全事件新闻文本的实体关系抽取研究[J]. 农业机械学报, 2020, 51(7): 244-253.
Zheng Limin, Qi Shanshan, Tian Lijun, et al. Entity relationextraction of news texts for food safety events [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 244-253.
[5] Malarkodi C S, Lex E, Devi S L. Named entity recognition for the agricultural domain [J]. Research in Computing Science, 2016, 117(1): 121-132.
[6] 李想, 魏小红, 贾璐, 等. 基于条件随机场的农作物病虫害及农药命名实体识别[J]. 农业机械学报, 2017, 48(S1): 178-185.
Li Xiang, Wei Xiaohong, Jia Lu, et al. Recognition ofcrops, diseases and pesticides named entities in Chinese based on conditional random fields [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 178-185.
[7] Hochreiter S, Schmidhuber J. Long short-term memory [J].Neural Computation, 1997, 9(8): 1735-1780.
[8] Huang Z, Xu W, Yu K. Bidirectional LSTM—CRF models for sequence tagging [J]. Computer Science, 2015, 4(1): 1508-1519.
[9] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding [J]. arXiv preprint arXiv:1810.04805, 2018.
[10] 陈剑, 何涛, 闻英友, 等. 基于BERT模型的司法文书实体识别方法[J]. 东北大学学报(自然科学版), 2020, 41(10): 1382-1387.
Chen Jian, He Tao, Wen Yingyou, et al. Entity recognition method for judicial documents based on BERT model [J]. Journal of Northeastern University (Natural Science), 2020, 41(10): 1382-1387.
[11] Strubell E, Verga P, Belanger D, et al. Fast and accurate entity recognition with iterated dilated convolutions [C]. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017: 2670-2680.
[12] 李妮, 关焕梅, 杨飘, 等. 基于BERT—IDCNN—CRF的中文命名实体识别方法[J]. 山东大学学报(理学版), 2020, 55(1): 102-109.
Li Ni, Guan Huanmei, Yang Piao, et al. BERT—IDCNN—CRF for named entity recognition in Chinese [J]. Journal of Shandong University (Natural Science), 2020, 55(1): 102-109.
[13] Zhang Y, Yang J. Chinese NER using lattice LSTM [C].Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 1554-1564.
[14] 李书琴, 张明美, 刘斌. 融合字词语义信息的猕猴桃种植领域命名实体识别研究[J]. 农业机械学报, 2022, 53(12): 323-331.
Li Shuqin, Zhang Mingmei, Liu Fu. Kiwifruit planting entity recognition based on character and word information fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 323-331.
[15] Li M Y, Kong F. Combined self-attention mechanism for named entity recognition in social media [J]. Journal of Tsinghua University (Science and Technology), 2019, 59(6): 461-467.
[16] 刘歆宁. 融合多特征及协同注意力的医学命名实体识别[J]. 计算机工程与应用, 2024, 60(6): 188-198.
Liu Xinning. Medical named entity recognition based on multi-feature and co-attention [J]. Computer Engineering and Applications, 2024, 60(6): 188-198.
[17] Guo X, Zhou H, Su J, et al.Chinese agricultural diseases and pests named entity recognition with multi-scale local context features and self-attention mechanism [J]. Computers and Electronics in Agriculture, 2020, 179(5): 105830.
[18] 罗熹, 夏先运, 安莹,等. 结合多头自注意力机制与BiLSTM—CRF的中文临床实体识别[J]. 湖南大学学报(自然科学版), 2021, 48(4): 45-55.
Luo Xi, Xia Xianyun, An Ying, et al. Chinese CNER combined with multi-head self-attention and BiLSTM—CRF [J]. Journal of Hunan University (Natural Sciences), 2021, 48(4): 45-55.
[19] 王雅童. 基于知识图谱的兽药知识问答系统研究与实现[D]. 泰安: 山东农业大学, 2022.
Wang Yatong. Research and implementation of veterinary drug knowledge question answering system based on knowledge graph [D]. Tai'an: Shandong Agricultural University, 2022.
|