English

Journal of Chinese Agricultural Mechanization

Journal of Chinese Agricultural Mechanization ›› 2024, Vol. 45 ›› Issue (12): 181-186.DOI: 10.13733/j.jcam.issn.20955553.2024.12.027

• Agricultural Informationization Engineering • Previous Articles     Next Articles

Identification method of plot-scale rice cultivation in southern hilly regions

Wu Ruijiao, Chen Guangjian   

  1. (Fujian Geologic Surveying and Mapping Institute, Fuzhou, 350011, China)
  • Online:2024-12-15 Published:2024-12-02

地块尺度的南方丘陵地区水稻种植识别方法

吴瑞姣,陈光剑   

  1. (福建省地质测绘院,福州市,350011)
  • 基金资助:
    福建省科技计划项目(2022N0019)

Abstract:

Aiming at the hilly area with cloudy rain and complex plot distribution in southern China, a new method for multi-season rice plot level structure information recognition is proposed. By utilizing high-resolution optical imagery and time-series Sentinel-1A SAR imagery, integrated with the Psi-Net model for multi-task semantic segmentation, the study analyzes the relationship between rice growth phenology and backscatter coefficients. The method achieves precise extraction of multi-season rice planting distributions through thresholding, validated in Pucheng County, Fujian Province. Results demonstrate superior performance in shape preservation and boundary accuracy, with Hausdorff distance of 21.368, notably better than the single-task U-Net network. Overall, the method achieves 88.6% and 87.7% accuracies for mid-season and late-season rice identification, respectively, with Kappa coefficients of 0.752 and 0.738. These findings underscore the significant application potential and practical value of the proposed approach for rice planting plot recognition under complex climatic and terrain conditions in southern regions.

Key words: southern hilly areas, rice recognition, SAR image, time series, high resolution, plot

摘要:

针对南方多云雨且地块分布复杂的丘陵地区,提出一种适用该地区的多季水稻地块级结构信息识别方法。利用一期亚米级光学影像与时序Sentinel-1A SAR影像,结合Psi-Net模型进行多任务语义分割,分析水稻生长物候特征与后向散射系数的关系,最终通过阈值法实现对多季水稻种植分布信息的准确提取,并在福建省浦城县进行验证。结果表明,该方法在形状保持能力和识别精度上表现优异。中稻和晚稻种植地块的边界与地面真实值吻合度较高,豪斯多夫距离为21.368,明显优于单一任务的U-Net网络。中稻和晚稻识别的总体精度分别达到88.6%和87.7%,Kappa系数分别为0.752和0.738。所提方法在南方复杂气候和地形条件下的水稻种植地块识别上具有显著应用潜力和实用价值。

关键词: 南方丘陵地区, 水稻识别, SAR影像, 时间序列, 高分辨率, 地块

CLC Number: