[1]
Franzius M, Dunn M, Einecke N, et al. Embedded robust visual obstacle detection on autonomous lawn mowers [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 44-52.
[2]
Daniyan I, Balogun V, Adeodu A, et al. Development and performance evaluation of a robot for lawn mowing [J]. Procedia Manufacturing, 2020, 49: 42-48.
[3]
周结华, 代冀阳, 周继强. 面向大型机场草坪的割草机器人路径规划及轨迹跟踪控制研究[J]. 工程设计学报, 2019, 26(2): 146-152.
Zhou Jiehua, Dai Jiyang, Zhou Jiqiang, et al. Research on path planning and trajectory tracking control of mowing robot for large airport lawn [J]. Chinese Journal of Engineering Design, 2019, 26(2): 146-152.
[4]
左锦, 倪金鑫, 陈章宝. 视觉导航草坪修剪机器人控制系统设计[J]. 工业控制计算机, 2020, 33(2): 81-82.
Zuo Jin, Ni Jinxin, Chen Zhangbao. Design of control system for visual navigation mowing robot [J]. Industrial Control Computer, 2020, 33(2): 81-82.
[5]
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
[6]
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
[7]
Girshick R. Fast R-CNN [J]. Computer Science, 2015.
[8]
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection [J]. IEEE, 2016.
[9]
Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2017: 6517-6525.
[10]
Redmon J, Farhadi A. YOLOv3: An Incremental Improvement [J]. arXiv eprints, 2018.
[11]
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. arXiv Preprint arXiv: 2004.10934, 2020.
[12]
Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector [C]. European Conference on Computer Vision. Springer, Cham, 2016: 21-37.
[13]
Fu C Y, Liu W, Ranga A, et al. Dssd: Deconvolutional single shot detector [J]. arXiv Preprint arXiv: 1701.06659, 2017.
[14]
Li Z, Zhou F. FSSD: Feature fusion single shot multibox detector [J]. arXiv Preprint arXiv: 1712.00960, 2017.
[15]
Zhang S, Wen L, Bian X, et al. Singleshot refinement neural network for object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4203-4212.
[16]
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[17]
Gao S H, Cheng M M, Zhao K, et al. Res2net: A new multiscale backbone architecture [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662.
[18]
Hu J, Shen L, Sun G. Squeezeandexcitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[19]
Han S, Pool J, Tran J, et al. Learning both weights and connections for efficient neural network [J]. Advances in Neural Information Processing Systems, 2015, 28.
[20]
CarreiraPerpinán M A, Idelbayev Y. “learningcompression” algorithms for neural net pruning [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8532-8541.
[21]
Li H, Kadav A, Durdanovic I, et al. Pruning filters for efficient convents [J]. arXiv Preprint arXiv: 1608.08710, 2016.
[22]
Yu R, Li A, Chen C F, et al. Nisp: Pruning networks using neuron importance score propagation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 9194-9203.
[23]
He Y, Liu P, Wang Z, et al. Filter pruning via geometric median for deep convolutional neural networks acceleration [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4340-4349.
|