Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (2): 148-155.DOI: 10.13733/j.jcam.issn.2095-5553.2023.02.021
Previous Articles Next Articles
He Yushuang, Wang Zhuo, Wang Xiangping, Xiao Jin, Luo Youyi, Zhang Junfeng.
Online:
2023-02-15
Published:
2023-02-28
何雨霜,王琢,王湘平,肖进,罗友谊,张俊峰
基金资助:
CLC Number:
He Yushuang, Wang Zhuo, Wang Xiangping, Xiao Jin, Luo Youyi, Zhang Junfeng.. Research progress of deep learning in crop disease image recognition[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 148-155.
何雨霜, 王琢, 王湘平, 肖进, 罗友谊, 张俊峰. 深度学习在农作物病害图像识别中的研究进展[J]. 中国农机化学报, 2023, 44(2): 148-155.
[1] 周惠汝, 吴波明. 深度学习在作物病害图像识别方面应用的研究进展[J]. 中国农业科技导报, 2021, 23(5): 61-68. Zhou Huiru, Wu Boming. Advances in research on deep learning for crop disease image recognition [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 61-68. [2] 王聃, 柴秀娟. 机器学习在植物病害识别研究中的应用[J]. 中国农机化学报, 2019, 40(9): 171-180. Wang Dan, Chai Xiujuan. Application of machine learning in plant diseases recognition [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 171-180. [3] 康飞龙, 李佳, 刘涛, 等. 多类农作物病虫害的图像识别应用技术研究综述[J]. 江苏农业科学, 2020, 48(22): 22-27. [4] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313: 504-507. [5] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets [J]. Neural computation, 2006, 18(7): 1527-1554. [6] Salakhutdinov R, Hinton G E. Deep Boltzmann machines [J]. Journal of Machine Learning Research, 2009, 5(2): 1967-2006. [7] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105. [8] Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks [C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2013: 6645-6649. [9] Goodfellow I, PougetAbadie J, Mirza M, et al. Generative adversarial nets [J]. Advances in Neural Information Processing Systems, 2014, 27: 2672-2680. [10] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules [C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 3859-3869. [11] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Computer Science, 2014. [12] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9. [13] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [14] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708. [15] Hughes D P, Salathe M. An open access repository of images on plant health to enable the development of mobile disease diagnostics [J]. Computer Science, 2015. [16] 任胜男, 孙钰, 张海燕, 等. 基于oneshot学习的小样本植物病害识别[J]. 江苏农业学报, 2019, 35(5): 1061-1067. Ren Shengnan, Sun Yu, Zhang Haiyan, et al. Plant disease identification for small sample based on oneshot learning [J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(5): 1061-1067. [17] Adedoja A, Owolawi P A, Mapayi T. Deep learning based on NASNet for plant disease recognition using leave images [C]. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), IEEE, 2019: 1-5. [18] Wang G, Sun Y, Wang J. Automatic imagebased plant disease severity estimation using deep learning [J]. Computational Intelligence and Neuroscience, 2017: 2917536. [19] Too E C, Yujian L, Njuki S, et al. A comparative study of finetuning deep learning models for plant disease identification [J]. Computers and Electronics in Agriculture, 2019, 161: 272-279. [20] WiesnerHanks T, Stewart E L, Kaczmar N, et al. Image set for deep learning: field images of maize annotated with disease symptoms [J]. BMC Research Notes, 2018, 11(1): 1-3. [21] Singh D, Jain N, Jain P, et al. PlantDoc: A dataset for visual plant disease detection [M]. Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, 2020: 249-253. [22] Barbedo J G A, Koenigkan L V, HalfeldVieira B A, et al. Annotated plant pathology databases for imagebased detection and recognition of diseases [J]. IEEE Latin America Transactions, 2018, 16(6): 1749-1757. [23] Prajapati H B, Shah J P, Dabhi V K. Detection and classification of rice plant diseases [J]. Intelligent Decision Technologies, 2017, 11(3): 357-373. [24] Thapa R, Snavely N, Belongie S, et al. The plant pathology 2020 challenge dataset to classify foliar disease of apples [J]. arXiv eprints, 2020. [25] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201. Long Mansheng, Ouyang Chunjuan, Liu Huan, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 194-201. [26] Karlekar A, Seal A. SoyNet: Soybean leaf diseases classification [J]. Computers and Electronics in Agriculture, 2020, 172: 105342. [27] Liang Q, Xiang S, Hu Y, et al. PD2SE-Net: Computerassisted plant disease diagnosis and severity estimation network [J]. Computers and Electronics in Agriculture, 2019, 157: 518-529. [28] 杨国亮, 许楠, 康乐乐, 等. 基于参数指数非线性残差神经网络的脐橙病变叶片识别[J]. 浙江农业学报, 2018, 30(6): 1073-1081. Yang Guoliang, Xu Nan, Kang Lele, et al. Identification of navel orange lesions leaves based on parametric exponential nonlinear residual neural network [J]. Acta Agriculturae Zhejiangensis, 2018, 30(6): 1073-1081. [29] Hassan S M, Maji A K, Jasiński M, et al. Identification of plantleaf diseases using CNN and transferlearning approach [J]. Electronics, 2021, 10(12): 1388. [30] Mohanty S P, Hughes D P, Salathé M. Using deep learning for imagebased plant disease detection [J]. Frontiers in Plant Science, 2016, 7: 1419. [31] Pan S J, Yang Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359. [32] 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236. Xu Jinghui, Shao Mingye, Wang Yichen, et al. Recognition ofcorn leaf spot and rust based on transfer learning with convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236. [33] 陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44. Chen Guifen, Zhao Shan, Cao Liying, et al. Corn plant disease recognition based on migration learning and convolutional neural network [J]. Smart Agriculture, 2019, 1(2): 34-44. [34] 燕斌, 周鹏, 严利. 基于迁移学习的小样本农作物病害识别[J]. 现代农业科技, 2019(6): 3. [35] Zhu J Y, Park T, Isola P, et al. Unpaired imagetoimage translation using cycleconsistent adversarial networks [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2223-2232. [36] Zhang H, Xu T, Li H, et al. Stackgan: Text to photorealistic image synthesis with stacked generative adversarial networks [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 5907-5915. [37] Karras T, Laine S, Aila T. A stylebased generator architecture for generative adversarial networks [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4401-4410. [38] Tian Y, Yang G, Wang Z, et al. Detection of apple lesions in orchards based on deep learning methods of CycleGAN and yolov3-dense [J]. Journal of Sensors, 2019. [39] Cap Q H, Uga H, Kagiwada S, et al. LeafGAN: An effective data augmentation method for practical plant disease diagnosis [J]. IEEE Transactions on Automation Science and Engineering, 2020. [40] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]. Advances in Neural Information Processing Systems, 2017: 5998-6008. [41] Zeng W, Li M. Crop leaf disease recognition based on selfattention convolutional neural network [J]. Computers and Electronics in Agriculture, 2020, 172: 105341. [42] Chen S, Zhang K, Zhao Y, et al. An approach for rice bacterial leaf streak disease segmentation and disease severity estimation [J]. Agriculture, 2021, 11(5): 420. [43] 曹英丽, 江凯伦, 于正鑫, 等. 基于深度卷积神经网络的水稻纹枯病检测识别[J]. 沈阳农业大学学报, 2020, 51(5): 568-575. Cao Yingli, Jiang Kailun, Yu Zhengxin, et al. Detection and recognition of rice sheath blight based on deep convolutional neural network [J]. Journal of Shenyang Agricultural University, 2020, 51(5): 568-575. [44] 陈善雄, 伍胜, 于显平, 等. 基于卷积神经网络结合图像处理技术的荞麦病害识别[J]. 农业工程学报, 2021, 37(3): 155-163. Chen Shanxiong, Wu Sheng, Yu Xianping, et al. Buckwheat disease recognition using convolution neural network combined with image processing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(3): 155-163. [45] Saikawa T, Cap Q H, Kagiwada S, et al. AOP: An antioverfitting pretreatment for practical imagebased plant diagnosis [C]. 2019 IEEE International Conference on Big Data (Big Data), IEEE, 2019: 5177-5182. [46] 刘阗宇, 冯全, 杨森. 基于卷积神经网络的葡萄叶片病害检测方法[J]. 东北农业大学学报, 2018, 49(3): 73-83. Liu Tianyu, Feng Quan, Yang Sen. Detecting grape diseases based on convolutional neural network [J]. Journal of Northeast Agricultural University, 2018, 49(3): 73-83. |
[1] | Sun Songli, Wen Hongyuan, Liu Binling, Zhong Jinyang, Mao Zhengxing. Design of intelligent sorting system of Pleurotus eryngii based on ROS and deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 95-102. |
[2] | Li Zongnan, Jiang Yi, Wang Si, Li Yuanhong, Huang Ping, Wei Peng. Object detection of invasive Erigeron L. plants base on YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 200-206. |
[3] | Wang Chuntao, , , , Liang Weijian, Guo Qingwen, Zhong Hao, Gan Yu, Xiao Deqin, , . Review on computervisionbased detection of agricultural pests [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 207-213. |
[4] | Chen Weimei, Liu Xinwei, Wang Tiewei, Xu Wenkai, Li Juan. Recognition of pine wilt disease based on twolevel fusion deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 214-219. |
[5] | Li Ping, Ma Yukun, Li Yancui, Feng Jike, Zhao Mingfu. Study on wheat seed variety identification based on transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 220-228. |
[6] | Li Ming, , Ding Zhihuan, , Zhao Jingxuan, Chen Siming, Li Wenyong, Yang Xinting. Detection method for cucumber downy mildew #br# #br# sporangia in a solar greenhouse based on improved YOLOv5s#br# [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 63-70. |
[7] | Yang Chenglei, , Lan Yubin, , Wang Qingyu, , Bie Xiaoting, , Shan Changfeng, , Wang Guobin, . Application of neural network in greenhouse microclimate prediction [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 89-99. |
[8] | Wang Lei, Yuan Ying, Gao Ling. Tomato disease image recognition based on an improved multiverse optimizer algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 176-181. |
[9] | Fu Hao, , Zhao Xueguan, Zhai Changyuan, , Zheng Kang, Zheng Shenyu, Wang Xiu. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207. |
[10] | Duan Yufei, , Dong Geng, Sun Jiwei, Wang Yanqing, . Sorting model of camellia fruit shells and tea seeds based on SE-ResNet network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 89-95. |
[11] | Li Yanzhou, He Yanzhou, , Qin Feng, , Qian Wanqiang, Wu Mei, Qiao Xi, . Identification of Spartina alterniflora based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 159-166. |
[12] | Xuan Menghui, Zhao Sixia, Xu Liyou, Chen Xiaoliang, Li Tuanfei. Assembly quality inspection method of combine harvester based on improved VMD and LSTM [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 132-140. |
[13] | Wang Xinyan, Yi Zhengyang.. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 171-176. |
[14] | Ren Hao, Li Li, Lu Shibo, Chen Jingyao, Zhang Yunfeng.. Identification method of mulberry tree branches in complex natural environments based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 182-188. |
[15] | Yang Wenji, Hu Wenchao, Zhao Yingding, Qian Wenbin.. Research on plant disease detection algorithm based on improved Yolov5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 108-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296