Journal of Chinese Agricultural Mechanization ›› 2022, Vol. 43 ›› Issue (10): 157-166.DOI: 10.13733/j.jcam.issn.2095-5553.2022.10.023
Previous Articles Next Articles
Guo Wenjuan, Feng Quan, Li Xiangzhou.
Online:
2022-10-15
Published:
2022-09-19
郭文娟1, 2,冯全2,李相周2
基金资助:
CLC Number:
Guo Wenjuan, Feng Quan, Li Xiangzhou.. Research progress of convolutional neural network model based on crop disease detection and recognition[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 157-166.
郭文娟, 冯全, 李相周. 基于农作物病害检测与识别的卷积神经网络模型研究进展[J]. 中国农机化学报, 2022, 43(10): 157-166.
[1] Carlson G A. A decision theoretic approach to crop disease prediction and control [J]. American Journal of Agricultural Economics, 1970, 52(2): 216-223. [2] Hiary H A, Ahmad S B, Reyalat M, et al. Fast and accurate detection and classification of plant diseases [J]. International Journal of Computer Applications, 2011, 17(3): 31-38. [3] Li N, Xiao Y, Shen L, et al. Smart agriculture with an automated Iotbased greenhouse system for local communities [J]. Advances in Internet of Things, 2019, 9(2): 15-31. [4] 张善文, 张传雷. 基于局部判别映射算法的玉米病害识别方法[J]. 农业工程学报, 2014, 30(11): 167-172. Zhang Shanwen, Zhang Chuanlei. Maize disease recognition based on local discriminant algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11): 167-172. [5] Cui D, Zhang Q, Li M, et al. Image processing methods for quantitatively detecting soybean rust from multispectral images [J]. Biosystems Engineering, 2010, 107(3): 186-193. [6] Mainkar P M, Ghorpade S, Adawadkar M. Plant leaf disease detection and classification using image processing techniques [J]. International Journal of Innovative and Emerging Research in Engineering, 2015, 2(4): 139-144. [7] Mondal D, Chakraborty A, Kole D K, et al. Detection and classification technique of Yellow Vein Mosaic Virus disease in okra leaf images using leaf vein extraction and Naive Bayesian classifier [C]. International Conference on Soft Computing Techniques & Implementations. IEEE, 2016: 166-171. [8] 刘立波. 基于图像的水稻叶部病害诊断技术研究[D]. 北京: 中国农业科学院, 2010. Liu Libo. Research on imagebased diagnosis technology of rice leaf diseases [D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. [9] Pujari J D, Yakkundimath R, Byadgi A S. NeuroKNN classification system for detecting fungal disease on vegetable crops using local binary patterns [J]. Agricultural Engineering International: The CIGR ejournal, 2014, 16(4): 299-308. [10] Huang G, Liu Z, Laurens V D M, et al. Densely connected convolutional networks [C]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261-2269. [11] Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks [J]. Pattern Recognition, 2015. [12] 林景栋, 吴欣怡, 柴毅, 等. 卷积神经网络结构优化综述[J]. 自动化学报, 2020, 46(1): 24-37. Lin Jingdong, Wu Xinyi, Chai Yi, et al. Structure optimization of convolutional neural networks: A survey [J]. Acta Automatica Sinica, 2020, 46(1): 24-37. [13] Singh B, Davis L S. An analysis of scale invariance in object detection snip [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3578-3587. [14] Simonyan K, Zisserman A. Very deep convolutional networks for large scale image recognition [J]. ArXiv Preprint, 2014. [15] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. [16] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift [J]. ArXiv Preprint, 2015. [17] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. [18] Szegedy C, Ioffe S, Vanhoucke V, et al. Inceptionv4 inception resnet and the impact of residual connections on learning [J]. ArXiv Preprint, 2016. [19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. [20] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. [21] Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. ArXiv Preprint, 2017. [22] Hu J, Shen L, Sun G. Squeezeandexcitation networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. [23] Li X, Wang W, Hu X, et al. Selective kernel networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019. [24] 周长建, 宋佳, 向文胜. 基于人工智能的作物病害识别研究进展[J]. 植物保护学报, 2022, 49(1): 316-324. Zhou Changjian, Song Jia, Xiang Wensheng. Progress in artificial intelligencebased crop disease identification [J]. Journal of Plant Protection, 2022, 49(1): 316-324. [25] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18. Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18. [26] Mohanty S P, Hughes D P, Salathe M. Using deep learning for image based plant disease detection [J]. Frontiers in Plant Science, 2016, 22(7): 1-10. [27] 孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. Sun Jun, Tan Wenjun, Mao Hanping, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215. [28] 何自芬, 黄俊璇, 刘强, 等. 基于非对称混洗卷积神经网络的苹果叶部病害分割[J]. 农业机械学报, 2021, 52(8): 221-230. He Zifen, Huang Junxuan, Liu Qiang, et al. High precision identification of apple leaf diseases based on asymmetric shuffle convolution [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 221-230. [29] Zeng W, Li M. Crop leaf disease recognition based on selfattention convolutional neural network [J]. Computers and Electronics in Agriculture, 2020, 172(1): 105341. [30] 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191. Zhao Lixin, Hou Fadong, Lü Zhengchao, et al. Image recognition of cotton leaf diseases and pests based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 184-191. [31] 钟昌源, 胡泽林, 李淼, 等. 基于分组注意力模块的实时农作物病害叶片语义分割模型[J]. 农业工程学报, 2021, 37(4): 208-215. Zhong Changyuan, Hu Zelin, Li Miao, et al. Realtime semantic segmentation model for crop disease leaves using group attention module [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 208-215. [32] 王东方, 汪军. 基于迁移学习和残差网络的农作物病害分类[J]. 农业工程学报, 2021, 37(4): 199-207. Wang Dongfang, Wang Jun. Crop disease classification with transfer learning and residual networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 199-207. [33] Kawasaki Y, Uga H, Kagiwada S, et al. Basic study of automated diagnosis of viral plant diseases using convolutional neural networks [J]. International Symposium on Visual Computing, 2015: 638-645. [34] Ramcharan A, Baranowski, McCloskey P, et al. Deep learning for image based cassava disease detection [J]. Frontiers in Plant Science, 2017, 23(10): 1-7. [35] Ferentinos K P. Deep learning models for plant disease detection and diagnosis [J]. Computers and Electronics in Agriculture, 2018, 145: 311-318. [36] Xing Shuli, Lee Marely, LeeKeunkwang. Citrus pests and diseases recognition model using weakly dense connected convolution network [J]. Sensors, 2019, 19, 3195. [37] 曾伟辉, 李淼, 李增, 等. 基于高阶残差和参数共享反馈卷积神经网络的农作物病害检测与识别[J]. 电子学报, 2019, 47(9): 1979-1986. Zeng Weihui, Li Miao, Li Zeng, et al. Highorder residual and parametersharing feedback convolutional neural network for crop disease recognition [J]. Acta Electronica Sinica, 2019, 47(9): 1979-1986. [38] 黄林生, 罗耀武, 杨小冬, 等. 基于注意力机制和多尺度残差网络的农作物病害检测与识别[J]. 农业机械学报, 2021, 52(10): 264-271. Huang Linsheng, Luo Yaowu, Yang Xiaodong, et al. Crop disease recognition based on attention mechanism and multiscale residual network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 264-271. [39] 王鑫鹏, 王晓强, 林浩, 等. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57. Wang Xinpeng, Wang Xiaoqiang, Lin Hao, et al. Review on the improvement of typical object detection algorithms in deep learning [J]. Computer Engineering and Applications, 2022, 58(6): 42-57. [40] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2014: 580-587. [41] Dai J, Li Y, He K, et al. R-FCN: Object detection via regionbased fully convolutional networks [C]. Advances in neural information processing systems, 2016: 379-387. [42] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. [43] Liu W, Anguelov D, Erhan D, et al. SSd: Single shot multibox detector [C]. European Conference on Computer Vision. Springer, Cham, 2016: 21-37. [44] 李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的小目标检测算法综述[J/OL]. 计算机工程: 1-17 [2022-07-08]. DOI:10.19678/j.issn.1000-3428.0062725. [45] Fuentes A, Yoon S, Kim S C, et al. A robust deeplearningbased detector for realtime tomato plant diseases and pests recognition [J]. Sensors, 2017, 17(9): 2022. [46] Selvaraj M G, Vergara A, Ruiz H, et al. AI powered banana diseases and pest detection [J]. Plant Methods, 2019, 15: 92. [47] Arsenovic M, Karanovic M, Sladojevic S, et al.Solving current limitations of deep learning based approaches for plant disease detection [J]. Symmetry, 2019, 11: 939. [48] 刘阗宇, 冯全. 基于卷积神经网络的葡萄叶片检测[J]. 西北大学学报 (自然科学版), 2017, 47(4): 505-512. Liu Tianyu, Feng Quan. Detecting grape leaves based on convolutional neural network [J]. Journal of Northwest University (Natural Science Edition), 2017, 47(4): 505-512. [49] 刘阗宇, 冯全, 杨森. 基于卷积神经网络的葡萄叶片病害检测方法[J]. 东北农业大学学报, 2018, 49(3): 73-83. Liu Tianyu, Feng Quan, Yang Sen. Detecting grape diseases based on Convolutional neural network [J]. Journal of Northeast Agricultural University, 2018, 49(3): 73-83. [50] 李就好, 林乐坚, 田凯, 等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12): 179-185. Li Jiuhao, Lin Lejian, Tian Kai, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster R-CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 179-185. [51] 樊湘鹏, 周建平, 许燕. 基于改进区域卷积神经网络的田间玉米叶部病害识别[J]. 华南农业大学学报, 2020, 41(6): 82-91. Fan Xiangpeng, Zhou Jianping, Xu Yan. Recognition of field maize leaf diseases based on improved regional convolutional neural network [J]. Journal of South China Agricultural University, 2020, 41(6): 82-91. [52] 李鑫然, 李书琴, 刘斌. 基于改进 Faster R_CNN 的苹果叶片病害检测模型[J]. 计算机工程, 2021, 47(11): 298-304. Li Xinran, Li Shuqin, Liu Bin. Apple leaf disease detection model based on improved Faster R_CNN[J]. Computer Engineering, 2021, 47(11): 298-304. [53] 叶中华, 赵明霞, 贾璐. 复杂背景农作物病害图像识别研究[J]. 农业机械学报, 2021, 52(S1): 118-124, 147. Ye Zhonghua, Zhao Mingxia, Jia Lu. Image recognition of crop diseases in complex background [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 118-124, 147. [54] Jiang P, Chen Y, Liu B, et al. Realtime detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks [J]. IEEE Access, 2019, 7: 59069-59080. [55] 俞佩仕. 水稻茎基部病害图像智能采集与病斑检测系统的设计与实现[D]. 杭州: 浙江理工大学, 2019. Yu Peishi. Design and implementation of rice stem base disease image intelligent acquisition and disease spot detection system [D]. Hangzhou: Zhejiang SciTech University, 2019. [56] Liu J, Wang X. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network [J]. Frontiers in Plant Science, 2020, 11: 898. [57] Liu J, Wang X. Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model [J]. Plant Methods, 2020, 16: 83. [58] Liang Q, Xiang S, Hu Y, et al. PD2SE-net: computerassisted plant disease diagnosis and severity estimation network [J]. Computers and Electronics in Agriculture, 2019, 157(1): 518-529. [59] Jose Gm E, Renato A K, Jose A V. Deep learning for classification and severity estimation of coffee leaf biotic stress [J]. Computers and Electronics in Agriculture, 2020, 169, 105162. [60] Xiang S, Liang Q, Sun W, et al. L-CSMS: novel lightweight network for plant disease severity recognition [J]. Journal of Plant Diseases and Protection, 2021, 128: 557-569. [61] 鲍文霞, 林泽, 胡根生, 等. 基于RSTCNN的小麦叶片病害严重度估计[J]. 农业机械学报, 2021, 52(12): 242-252. Bao Wenxia, Lin Ze, Hu Gensheng, et al. Severity estimation of wheat leaf diseases based on RSTCNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 242-252. [62] 万军杰, 祁力钧, 卢中奥, 等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报, 2021, 26(11): 219-221. Wan Junjie, Qi Liju, Lu Zhongao, et al. Recognition and grading of diseases and pests in orchard by GoogLeNet based on transfer learning [J]. Journal of China Agricultural University, 2021, 26(11): 219-221. [63] 郭小清, 范涛杰, 舒欣. 基于改进MultiScale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169. Guo Xiaoqing, Fan Taojie, Shu Xin. Tomato leaf diseases recognition based on improved MultiScale AlexNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 162-169. [64] 王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247. Wang Meihua, Wu Zhenxin, Zhou Zuguang. Finegrained identification research of crop pests and diseases based on improved CBAM via attention [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 239-247. |
[1] | Sun Songli, Wen Hongyuan, Liu Binling, Zhong Jinyang, Mao Zhengxing. Design of intelligent sorting system of Pleurotus eryngii based on ROS and deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 95-102. |
[2] | Liu Min, Zhou Li. Apple disease leaf detection based on multiscale feature fusion network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 184-190. |
[3] | Yu Sheng, Xie Li. Research on plant disease identification based on transfer learning and convolutional vision transformer [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 191-197. |
[4] | Li Zongnan, Jiang Yi, Wang Si, Li Yuanhong, Huang Ping, Wei Peng. Object detection of invasive Erigeron L. plants base on YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 200-206. |
[5] | Wang Chuntao, , , , Liang Weijian, Guo Qingwen, Zhong Hao, Gan Yu, Xiao Deqin, , . Review on computervisionbased detection of agricultural pests [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 207-213. |
[6] | Chen Weimei, Liu Xinwei, Wang Tiewei, Xu Wenkai, Li Juan. Recognition of pine wilt disease based on twolevel fusion deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 214-219. |
[7] | Li Ping, Ma Yukun, Li Yancui, Feng Jike, Zhao Mingfu. Study on wheat seed variety identification based on transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 220-228. |
[8] | Li Ming, , Ding Zhihuan, , Zhao Jingxuan, Chen Siming, Li Wenyong, Yang Xinting. Detection method for cucumber downy mildew #br# #br# sporangia in a solar greenhouse based on improved YOLOv5s#br# [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 63-70. |
[9] | Yang Chenglei, , Lan Yubin, , Wang Qingyu, , Bie Xiaoting, , Shan Changfeng, , Wang Guobin, . Application of neural network in greenhouse microclimate prediction [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 89-99. |
[10] | Wang Lei, Yuan Ying, Gao Ling. Tomato disease image recognition based on an improved multiverse optimizer algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 176-181. |
[11] | Fu Hao, , Zhao Xueguan, Zhai Changyuan, , Zheng Kang, Zheng Shenyu, Wang Xiu. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207. |
[12] | Duan Yufei, , Dong Geng, Sun Jiwei, Wang Yanqing, . Sorting model of camellia fruit shells and tea seeds based on SE-ResNet network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 89-95. |
[13] | Li Yanzhou, He Yanzhou, , Qin Feng, , Qian Wanqiang, Wu Mei, Qiao Xi, . Identification of Spartina alterniflora based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 159-166. |
[14] | Xuan Menghui, Zhao Sixia, Xu Liyou, Chen Xiaoliang, Li Tuanfei. Assembly quality inspection method of combine harvester based on improved VMD and LSTM [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 132-140. |
[15] | Wang Xinyan, Yi Zhengyang.. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 171-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296