[1]
王洪亮, 吴康云. 对贵州辣椒产业技术体系建设的思考[J]. 辣椒杂志, 2020, 18(2): 14-17.
Wang Hongliang Wu Kangyun. Thoughts on the construction of guizhou pepper industrial technology system [J]. Journal of China Capsicum, 2020, 18(2): 14-17.
[2]
贵州: 从辣椒大省迈向辣椒强省[J]. 中国蔬菜, 2020(9): 105.
[3]
金学欢. 贵州省辣椒产业发展研究[D]. 贵阳: 贵州大学, 2018.
Jin Xuehuan. Research on the development of pepper industry in Guizhou Province [D]. Guiyang: Guizhou University, 2018.
[4]
周丕东, 刘春波, 张佩. 贵州山地农业机械化发展现状及对策建议[J]. 中国农机化学报, 2020, 41(7): 231-236.
Zhou Pidong Liu Chunbo Zhang Pei. Present situation and countermeasures of agricultural mechanization in mountainous areas of Guizhou Province [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 231-236.
[5]
Herck L V, Kurtser P, Wittemans L, et al. Crop design for improved robotic harvesting: A case study of sweet pepper harvesting [J]. Biosystems Engineering, 2020, 192:294-308.
[6]
Kim T H, Kim D C, Cho Y. Performance comparison and evaluation of two small chili pepper harvester prototypes that attach to walking cultivators [J]. Applied Sciences, 2020, 10(7): 2570.
[7]
胡爽吉. 梳齿式辣椒采摘装置的设计研究[D]. 石河子: 石河子大学, 2012.
Hu Shuangji. Design and research of the combtype picking device for chili pepper [D]. Shihezi: Shihezi University, 2012.
[8]
张俊三, 阿力木·买买提吐尔逊, 李谦绪, 等. 辣椒收获机(4JZ-3600A自走式)[P]. 中国专利:CN306106326S, 2020-10-16.
[9]
赵飞龙. 辣椒收获机液压系统设计研究[D]. 石河子: 石河子大学, 2020.
Zhao Feilong. Study on the hydraulic system design of pepper harvester [D]. Shihezi: Shihezi University, 2020.
[10]
陈长林, 石磊, 孙勇飞, 等. 一种刷辊式辣椒收获机[P]. 中国专利: CN209994889U, 2020-01-31.
[11]
黄晓鹏, 万芳新, 戴立勋, 等. 一种线辣椒收获机[P]. 中国专利: CN211129013U, 2020-07-31.
[12]
张祥军, 张胜楠. 一种辣椒收获机[P]. 中国专利: CN109287269A, 2019-02-01.
[13]
解福祥, 徐萌萌, 张训林, 等. 果园运输机器人的结构设计与试验[J]. 中国农机化学报, 2020, 41(5): 170-175.
Xie Fuxiang Xu Mengmeng Zhang Xunlin, et al. Structural design and simulation analysis of shrimp orchard transport robot [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5): 170-175.
[14]
欧阳益斌. 果园深松机底盘典型工况动力学分析与试验[D]. 长沙: 中南林业科技大学, 2018.
Ouyang Yibin. Dynamic analysis and experiment of typical operating conditions for orchard subsoiler chassis [D]. Changsha: Center South University of Forestry and Technology, 2018.
[15]
王锋. 丘陵山地果园动力底盘的坡地通过性研究[D]. 重庆: 西南大学, 2020.
Wang Feng. Study on slope passability of the orchard power chassis in hilly area [D]. Chongqing: Southwest University, 2020.
[16]
宋韩韩. 基于ADAMS的刚柔耦合整车模型平顺性仿真研究[D]. 锦州: 辽宁工业大学, 2015.
Song Hanhan. The simulation study of ride comfort for rigidflexible coupling vehicle model base on ADAMS [D]. Jinzhou: Liaoning University of Technology, 2015.
[17]
Edwin P, Shankar K, Kannan K. Soft soil track interaction modeling in single rigid body tracked vehicle models [J]. Journal of Terramechanics, 2018, 77: 1-14.
[18]
鲍向东, 刘锡勇. 贵州丘陵山区小型多功能田间作业机研究[J]. 农业机械, 2011(28): 120-121.
[19]
刘平义, 彭凤娟, 李海涛, 等. 丘陵山区农用自适应调平底盘设计与试验[J]. 农业机械学报, 2017, 48(12): 42-47.
Liu Pingyi, Peng Fengjuan, Li Haitao. Design and experiment of adaptive leveling chassis for hilly area [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 42-47.
[20]
孙术发, 任春龙, 李涛, 等. 基于履带式底盘的改进型森林消防车通过性[J]. 农业工程学报, 2018, 34(17): 61-67.
Sun Shufa, Ren Chunlong, Li Tao, et al. Trafficability analysis of improved forest fire engine based on crawler chassis [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 61-67.
[21]
张拓. 小型山地履带底盘行驶性能仿真分析及试验研究[D]. 重庆: 重庆理工大学, 2019.
Zhang Tuo. Simulation Analysis and experimental study of the small farm crawler chassis for mountain [D]. Chongqing: Chongqing University of Technology,2019.
[22]
黄晗, 李建桥, 吴宝广, 等. 轻载荷条件下轻型车辆车轮牵引通过性模型的建立与验证[J]. 农业工程学报, 2015, 31(12): 64-70.
Huang Han, Li Jianqiao, Wu Baoguang, et al. Construction and verification of lightweight vehicle wheel tractive trafficability model under light load [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 64-70.
[23]
吴哲, 马岩, 杨春梅, 等. 简易履带式行走机构的设计及通过性分析[J]. 林业机械与木工设备, 2013, 41(12): 14-16.
Wu Zhe, Ma Yan, Yang Chunmei, et al. Design and passage analysis of a simple crawler walking mechanism [J]. Forestry Machinery & Woodworking Equipment, 2013, 41(12): 14-16.
[24]
李浩. 一种轮履复合救援机器人底盘的动力学分析与优化[D]. 天津: 天津理工大学, 2015.
Li Hao. The dynamic analysis and optimization for the chassis of a wheeltracked rescue robot [D]. Tianjin: Tianjin University of Technology, 2015.
[25]
王颖, 李建桥, 张广权, 等. 仿生步行足沙地力学特性研究[J]. 农业机械学报, 2016, 47(2): 384-389.
Wang Ying, Li Jianqiao, Zhang Guangquan, et al. Mechanical characteristics of bionic walking foot on soft sand [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 384-389.
[26]
芮强, 王红岩, 王钦龙, 等. 履带车辆转向性能参数分析与试验研究[J]. 机械工程学报, 2015, 51(12): 127-136.
Rui Qiang, Wang Hongyan, Wang Qinlong, et al. Research on the acquisition of steering performance parameters of armored vehicle based on experiments [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 51(12): 127-136.
[27]
谢铌. 小型山地履带底盘坡地行驶性能分析与试验研究[D]. 重庆: 重庆理工大学, 2020.
Xie Ni. Analysis and experimental study on the running performance of the small crawler chassis for mountain on slope [D]. Chongqing: Chongqing University of Technology, 2020.
[28]
崔雪斌, 张宏, 石涛. 基于链环不均匀系数的履带车辆行驶平顺性分析[J]. 工程设计学报, 2018, 25(1): 71-78.
Cui Xuebin, Zhang Hong, Shi Tao. Ride comfort analysis of tracked vehicle based on nonuniform coefficient of link [J]. Chinese Journal of Engineering Design, 2018, 25(1): 71-78.
[29]
姚禹. 基于履带—地面耦合系统的低速履带车辆通过性研究[D]. 长春: 吉林大学, 2016.
Yao Yu. Research on the traffic ability of lowspeed tracked vehicle based on tracksoil coupling system [D]. Changchun: Jilin University, 2016.
|