Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (7): 91-100.DOI: 10.13733/j.jcam.issn.2095-5553.2023.07.013
Previous Articles Next Articles
Fu Min, Chen Xiaoqing, Gao Zefei, Wang Chengmeng, Hao Yilin, Guo Shike
Online:
2023-07-15
Published:
2023-07-31
付敏,陈效庆,高泽飞,王成梦,郝镒林,郭世珂
基金资助:
CLC Number:
Fu Min, Chen Xiaoqing, Gao Zefei, Wang Chengmeng, Hao Yilin, Guo Shike. Research status and prospect of straw powder utilization technology and straw microgrinding[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 91-100.
付敏, 陈效庆, 高泽飞, 王成梦, 郝镒林, 郭世珂. 秸秆粉体利用技术及秸秆微粉碎研究现状与展望[J]. 中国农机化学报, 2023, 44(7): 91-100.
[1] 共研产业研究院. 2023年中国秸秆行业资源量、产品均价及综合利用规模情况分析[EB/OL]. https://www.bilibili.com/read/cv22523267, 20230320. [2] Koul B, Yakoob M, Shah M P. Agricultural waste management strategies for environmental sustainability [J]. Environmental Research, 2021, 206: 112285. [3] 韩绪明, 张姬, 耿爱军, 等. 玉米秸秆机械化利用综述[J]. 中国农机化学报, 2018, 39(4): 114-118. Han Xuming, Zhang Ji, Geng Aijun, et al. Review on mechanization utilization of corn stalks [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(4): 114-118. [4] 姜伟, 张华, 李娜, 等. 山东省农作物秸秆利用与装备现状[J]. 中国农机化学报, 2019, 40(2): 169-174. Jiang Wei, Zhang Hua, Li Na, et al. Status of crop straw utilization and equipments in Shandong province[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(2): 169-174. [5] Yu Qiong, Liu Ronghou, Li Kun, et al. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 51-58. [6] Chu Dawang, Xin Yingying, Zhao Chen. Production of bioethanol by consecutive hydrogenolysis of cornstalk cellulose [J]. Chinese Journal of Catalysis, 2021, 42(5): 844-854. [7] Li Xinxin, Shi Zuliang, Wang Jiuchen, et al. Review on the crop straw utilization technology of China[J]. American Journal of Environmental Science and Engineering, 2020, 4(4): 61-64. [8] Ma Yingqun, Shen Yanqing, Liu Yu, 等. 秸秆处理技术的最新进展: 挑战与解决方案(韩柏和译)[J]. 中国农机化学报, 2020, 41(11): 152-161. Ma Yingqun, Shen Yanqing, Liu Yu, et al. State of the art of straw treatment technology: Challenges and solutions forward (Han Baihe Translator)[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(11): 152-161. [9] Yang H S. Thermal and dynamic mechanical thermal analysis of lignocellulosic materialfilled polyethylene biocomposites [J]. Journal of Thermal Analysis and Calorimetry, 2017, 130(3): 1345-1355. [10] 侯楚豪. 溶胶压制玉米秸秆板材的研究[D]. 武汉: 武汉轻工大学, 2020. Hou Chuhao. Study on the compression of corn straw with silica sol [D]. Wuhan: Wuhan Polytechnic University, 2020. [11] 钱特蒙. 木质纤维/无机(碳)纳米复合无胶纤维板的制备及其性能研究[D]. 杭州: 浙江农林大学, 2019. Qian Temeng. Stay on the fabrieation and performance [D]. Hangzhou: Zhejiang A & F University, 2019. [12] 严婷婷, 史凯欣, 易鹏, 等. 秸秆/合成橡胶复合材料的界面改性及性能研究[J]. 森林工程, 2017, 33(3): 48-52. Yan Tingting, Shi Kaixin, Yi Peng, et al. Study on chemical surface modification and performance of the strawsynthetic rubber composites [J]. Forest Engineering, 2017, 33(3): 48-52. [13] 杨玉山, 沈华杰, 邱坚. 生物活化改性小麦秸秆纤维素基仿贻贝复合材料的制备[J]. 功能材料, 2020, 51(7): 7196-7201. Yang Yushan, Shen Huajie, Qiu Jian. Preparation of biomimetic nacrelike composite based on bioactive modification wheatstrawfibers[J]. Journal of Functional Materials, 2020, 51(7): 7196-7201. [14] 覃杨华. 玉米秸秆作为3D打印材料的研究[D]. 南宁: 广西大学, 2017. Qin Yanghua. Research on the 3D printing material of crops straw [D]. Nanning: Guangxi University, 2017. [15] Zhang Hui, Bourell D L, Guo Yanling. Analysis and optimization of mechanical properties of lasersintered cellulose/PLA mixture[J]. Materials, 2021, 14(4): 750-750. [16] 葛正浩, 齐志, 司丹鸽, 等. PLA/秸秆粉发泡木塑复合材料的压制成型及性能[J]. 塑料, 2018, 47(4): 117-121. Ge Zhenghao, Qi Zhi, Si Dange, et al. Press forming and properties of foamed wood plastic composite material of polylactide/straw flour[J]. Plastics, 2018, 47(4): 117-121. [17] 周帅, 候璞, 李云龙, 等. 玉米秸秆/聚乳酸复合材料的制备及性能测试[J]. 林业工程学报, 2019, 4(5): 92-99. Zhou Shuai, Hou Pu, Li Yunlong, et al. Preparation and properties of com stalk/polylactic acid composites [J]. Journal of Forestry Engineering, 2019, 4(5): 92-99. [18] 葛铁军, 赵婉晴, 刘啸凤. PBAT/棕榈酰氯酯化改性秸秆粉复合材料制备与性能[J]. 工程塑料应用, 2022, 50(1): 6-13, 65. Ge Tiejun, Zhao Wanqing, Liu Xiaofeng. Preparation and properties of PBAT/palmitoyl chloride esterified straw powder composites [J]. Engineering Plastics Application, 2022, 50(1): 6-13, 65. [19] Cindradewi A W, Bandi R, Park C W, et al. Preparation and characterization of polybutylene succinate reinforced with pure cellulose nanofibril and lignocellulose nanofibril using twostep process[J]. Polymers, 2021, 13(22): 3945. [20] 郭川东, 陆露, 向定汉. 玉米秸秆粉/废弃XLPE/LDPE复合材料的摩擦磨损性能研究[J]. 塑料工业, 2021, 49(11): 94-98, 151. Guo Chuandong, Lu Lu, Xiang Dinghan. The study of friction and wear properties of corn stalk powder/waste XLPE/LDPE composite materials[J]. China Plastics Industry, 2021, 49(11): 94-98, 151. [21] Zhang Quanguo, Jin Peng, Li Yameng, et al. Analysis of the characteristics of paulownia lignocellulose and hydrogen production potential via photo fermentation [J]. Bioresource Technology, 2021, 344(PB): 126361. [22] Faba L, Diaz E, Ordonez S. Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey [J]. Renewable and Sustainable Energy Reviews, 2015, 51: 273-287. [23] 李斌, 韩旭, 陈义龙, 等. 不同钙基吸收剂对玉米秸秆热解气化制氢特性的影响[J]. 可再生能源, 2017, 35(4): 502-507. Li Bin, Han Xu, Chen Yilong, et al. Effects of different calciumbased absorbents on hydrogen production of corn stalk pyrolysisgasification [J]. Renewable Energy Resources, 2017, 35(4): 502-507. [24] 罗娟, 田宜水, 宋成军, 等. 玉米秸秆厌氧产氢工艺参数优化[J]. 农业工程学报, 2015, 31(2): 235-240. Luo Juan, Tian Yishui, Song Chengjun, et al. Parameter optimization of hydrogen production by anaerobic fermentation with corn straw [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 235-240. [25] Qin Decai, Liu Zhanying, Zhao Yanzhang, et al. A sustainable route from corn stalks to N, Pdual doping carbon sheets toward high performance sodiumion batteries anode [J]. Carbon, 2018, 130: 664-671. [26] Zhu Yuanen, Gu Haichen, Chen Yanan, et al. Hard carbon derived from corn straw piths as anode materials for sodium ion batteries [J]. Ionics, 2018, 24(4): 1075-1081. [27] Liang Jicai, Bai Peiming, Yu Kaifeng, et al. Ultrafine SnO2 coated by wheat strawderived carbon used as anode for highperformance lithium ion batteries[J]. Diamond and Related Materials, 2020, 112: 108231. [28] Nita C, Zhang Biao, Dentzer J, et al. Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Naion batteries[J]. Journal of Energy Chemistry, 2021, 58(7): 207-218. [29] 周仕学, 张鸣林. 粉体工程导论[M]. 北京: 科学出版社, 2010.Zhou Shixue, Zhang Minglin. Introduction to powder Engineering[M]. Beijing: Science Pres, 2010. [30] 张长森. 粉体技术及设备[M]. 上海: 华东理工大学出版社, 2007.Zhang Changsen. Powder technology and equipment[M]. Shanghai: East China University of Science and Technology press, 2007. [31] 史早, 张甫生, 杨金来, 等. 超微粉碎对方竹笋全粉理化特性及微观结构的影响[J]. 食品工业科技, 2021, 42(24): 40-47. Shi Zao, Zhang Fusheng, Yang Jinlai, et al. Effect of superfine grinding on physicochemical properties and microstructure of chimonobambusa quadrangularis shoot powder [J]. Science and Technology of Food Industry, 2021, 42(24): 40-47. [32] 谢洪勇. 粉体力学与工程[M]. 北京: 化学工业出版社, 2003.Xie Hongyong. Powder mechanics and Engineering [M]. Beijing: Chemical Industry Press, 2003. [33] Zhao Lei, Sun Zhongfang, Zhang Chengcheng, et al. Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives [J]. Bioresource Technology, 2022, 343: 126123. [34] Chu Xiaodong, Cheng Qiushuang, Xu Yonghua, et al. Anaerobic digestion of corn straw pretreated by ultrasonic combined with aerobic hydrolysis[J]. Bioresource Technology, 2021, 341: 125826. [35] Tan Jinyu, Li Yan, Tan Xiang, et al. Advances in pretreatment of straw biomass for sugar production [J]. Frontiers in Chemistry, 2021, 9: 696030. [36] Rahmati S, Doherty W, Dubal D, et al. Pretreatment and fermentation of lignocellulosic biomass: Reaction mechanisms and process engineering [J]. Reaction Chemistry & Engineering, 2020, 5(11): 2017-2047. [37] 郑水林. 超细粉碎工程[M]. 北京: 中国建材工业出版社, 2006.〖JP2〗Zheng Shuilin. Superfine grinding engineering [M]. Beijing: China Building Materials Publishing House, 2006.〖JP〗 [38] 孙权, 张明星, 陈俊冬, 等. 分级式冲击磨制备玉米秸秆粉体[J]. 中国粉体技术, 2013, 19(6): 20-23. Sun Quan, Zhang Mingxing, Chen Jundong, et al. Research progress on lignocellulose pretreatment technology [J]. China Powder Science and Technology, 2013, 19(6): 20-23. [39] 付敏, 李萌, 郝镒林, 等. 基于TRIZ的锤击剪切复合式秸秆微粉碎机概念设计[J]. 可再生能源, 2022, 40(1): 15-20. Fu Min, Li Meng, Hao Yilin, et al. Conceptual design of hammershearing compound straw microgrinder based on TRIZ [J]. Renewable Energy Resources, 2022, 40(1): 15-20. [40] 李翔, 李双跃, 任朝富, 等. CXM超细分级磨实验系统设计与研究[J]. 现代化工, 2009, 29(9): 74-77, 79. Li Xiang, Li Shuangyue, Ren Chaofu, et al. Design and study on ultrafine classifier mill CXM experimental system[J].Modern Chemical Industry, 2009, 29(9): 74-77, 79. [41] 贺强. 农作物秸秆超细颗粒制备装备研究[D]. 上海: 上海工程技术大学, 2016. He Qiang. The research on the ultrafine particles equipment system of crop straw [D]. Shanghai: Shanghai University of Engineering Science, 2016. [42] 钟声标. 一种多物理场作用下玉米秸秆粉碎装备设计[J]. 包装工程, 2016, 37(23): 140-145. Zhong Shengbiao. Design of corn stalk crushing equipment in multiphysics fields[J]. Packaging Engineering, 2016, 37(23): 140-145. [43] 张钰瑶. AFG100型气流粉碎机的参数优化研究[D]. 昆明: 昆明理工大学, 2019. Zhang Yuyao. Study on parameter optimization of air jet mill AFG100 [D]. Kunming: Kunming University of Science and Technology, 2019. [44] 蔡相涌, 王洪斌, 蒋士忠, 等. 制备中草药超细微粉的新型装置及工艺研究[J]. 中成药, 2002(9): 7-9. Cai Xiangyong, Wang Hongbin, Jiang Shizhong, et al. Study of new device and technology in preparation of superfined Chinese herbal medicine powders[J]. Chinese Traditional Patent Medicine, 2002(9): 7-9. [45] 乔博磊. 新型立式振动研磨机研究与设计[D]. 西安: 陕西科技大学, 2017. Qiao Bolei. The research and design of the new type of vertical vibration mill [D]. Xian: Shaanxi University of Science and Technology, 2017. [46] 苏伟. 立式振动磨机的设计与研究[D]. 西安: 陕西科技大学, 2015. Su Wei. The design and research on vertical vibration mill [D]. Xian: Shaanxi University of Science and Technology, 2015. [47] Nakamura H, Kan H, Takeuchi H, et al. Effect of stator geometry of impact pulverizer on its grinding performance [J]. Chemical Engineering Science, 2015, 122: 565-572. [48] Yun T J, Oh W B, Lee B R, et al. A numerical study on particle behaviors of fluid flow in pulverizer [J]. Materials Today: Proceedings, 2020, 22(4): 1939-1948. [49] Ardi E G, Dong K J, Yu A B, et al. A combined experimental and DEM approach to determine the breakage of particles in an impact mill [J]. Powder Technology, 2017, 318: 543-548. [50] 王晓天. 高速分级式冲击磨工艺参数研究与流场分析[D]. 绵阳: 西南科技大学, 2016. Wang Xiaotian. Process parameters research and flow field analysis of high speed classifyimpact mill[D]. Mianyang: Southwest University of Science and Technology, 2016. [51] 杨盈盈, 侯越, 王立东, 等. 气流超微粉碎对马铃薯淀粉颗粒形貌及理化性质的影响[J]. 高分子通报, 2021(7): 43-50. Yang Yingying, Hou Yue, Wang Lidong, et al. Influence of jet milling on granule morphology and physicochemical properties of potato starch [J]. Polymer Bulletin, 2021(7): 43-50. [52] Drakos A, Kyriakakis G, Evageliou V, et al. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours [J]. Food Chemistry, 2017, 215: 326-332. [53] Rajeswari M S R, Azizi A K, Hashim S F S, et al. CFD simulation and experimental analysis of flow dynamics and grinding performance of opposed fluidized bed air jet mill [J]. International Journal of Mineral Processing, 2011, 98(1-2): 94-105. [54] Rodnianski V, Krakauer N, Darwesh K, et al. Aerodynamic classification in a spiral jet mill [J]. Powder Technology, 2013, 243: 110-119. [55] 程敏, 刘保国, 曹宪周, 等. 振动磨机磨介特征对小麦麸皮超微粉碎效果的影响[J]. 农业工程学报, 2021, 37(23): 256-263. Cheng Min, Liu Baoguo, Cao Xianzhou, et al. Effect of grinding medium characteristics of vibration mill on superfine grinding of wheat bran [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23): 256-263. [56] 周庆立. 卧式振动磨磨矿效果分析及关键参数影响研究[D]. 唐山: 华北理工大学, 2021. Zhou Qingli. Analysis on grinding effect of horizontal vibration mill and research on influence of key parameters [D]. Tangshan: North China University of Science and Technology, 2021. [57] 苏伟, 董继先, 樊联哲. 基于Workbench的振动磨机主振弹簧的优化设计[J]. 煤炭技术, 2015, 34(2): 237-240. Su Wei, Dong Jixian, Fan Lianzhe. Optimization design of main vibration spring of vibration mill based on workbench [J]. Coal Technology, 2015, 34(2): 237-240. [58] Patil A G, Anandhan S. Influence of planetary ball milling parameters on the mechanochemical activation of fly ash [J]. Powder Technology, 2015, 281: 151-158. |
[1] | Sun Fengchen, Cai Hongzhen, , Qi Zhiqiang, Gao Feng, Liu Yufeng, Liu Deying. Design and experiment of negative pressure steam heating system based on liquidair jet [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 104-112. |
[2] | Guo Minggang. . Optimal design of carbon capture process for biogas highvalue comprehensive utilization [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 152-157. |
[3] | Zhang Xinghui, Zhai Yuxuan, Zhang Cong, Li Zhao, Zhang Hong.. Research on combustion emission and environmental benefit analysis of new biomass boiler [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 115-120. |
[4] | . [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(9): 216-223. |
[5] | . [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 190-195. |
[6] | . [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 80-84. |
[7] | . [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(1): 68-71+84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296