Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (5): 63-70.DOI: 10.13733/j.jcam.issn.2095-5553.2023.05.009
Previous Articles Next Articles
Li Ming1, 2, Ding Zhihuan1, 2, Zhao Jingxuan2, Chen Siming2, Li Wenyong2, Yang Xinting2
Online:
2023-05-15
Published:
2023-06-02
李明1, 2,丁智欢1, 2,赵靖暄2,陈思铭2,李文勇2,杨信廷2
基金资助:
CLC Number:
Li Ming, , Ding Zhihuan, , Zhao Jingxuan, Chen Siming, Li Wenyong, Yang Xinting. Detection method for cucumber downy mildew #br# #br# sporangia in a solar greenhouse based on improved YOLOv5s#br#[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 63-70.
李明, 丁智欢, 赵靖暄, 陈思铭, 李文勇, 杨信廷. 基于改进YOLOv5s的日光温室黄瓜霜霉病孢子囊检测计数方法[J]. 中国农机化学报, 2023, 44(5): 63-70.
[1] 王慧, 李梅兰, 许建平, 等. 基于冠层温湿度模型的日光温室黄瓜霜霉病预警方法[J]. 应用生态学报, 2015, 26(10): 3027-3034. Wang Hui, Li Meilan, Xu Jianping, et al. An early warning method of cucumber downy mildew in solar greenhouse based on canopy temperature and humidity modeling [J]. Chinese Journal of Applied Ecology, 2015, 26(10): 3027-3034. [2] Liu Ran, Wang Hui, Guzmán J L, et al. A modelbased methodology for the early warning detection of cucumber downy mildew in greenhouses: An experimental evaluation [J]. Computers and Electronics in Agriculture, 2022, 194: 106751. [3] 高士刚, 罗金燕, 曾蓉, 等. 一体化智能孢子捕捉系统在黄瓜霜霉病和黄瓜白粉病预测上的应用[J]. 植物保护学报, 2017, 44(5): 779-787. Gao Shigang, Luo Jinyan, Zeng Rong, et al. Application of newlydeveloped automatic spore trap and identification system in forecasting cucumber downy mildew and cucumber powdery mildew [J]. Journal of Plant Protection, 2017, 44(5): 779-787. [4] Lei Yu, Yao Zhifeng, He Dongjian. Automatic detection and counting of urediniospores of Puccinia striiformis f sp tritici using spore traps and image processing [J]. Scientific Reports, 2018, 8(1): 1-11. [5] 李小龙, 马占鸿, 孙振宇, 等. 基于图像处理的小麦条锈病菌夏孢子模拟捕捉的自动计数[J]. 农业工 程学报, 2013, 29(2): 199-206. Li Xiaolong, Ma Zhanhong, Sun Zhenyu, et al. Automatic counting for trapped urediospores of Puccinia striiformis f. sp. tritici based on image processing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 199-206. [6] 齐龙, 蒋郁, 李泽华, 等. 基于显微图像处理的稻瘟病菌孢子自动检测与计数方法[J]. 农业工程学报, 2015, 31(12): 186-193. Qi Long, Jiang Yu, Li Zehua, et al. Automatic detection and counting method for spores of rice blast based on micro image processing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 186-193. [7] 王震, 褚桂坤, 王金星, 等. 基于HOG特征的IKSVM稻瘟病孢子检测[J]. 农业机械学报, 2018, 49(S1): 387-392. Wang Zhen, Chu Guikun, Wang Jinxing, et al. Spores detection of rice blast by IKSVM based on HOG features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 387-392. [8] Liang Xinshen, Wang Botao. Wheat powdery mildew spore images segmentation based on UNet [ J]. Journal of Physics: Conference Series, 2020, 1631: 012074. [9] 雷雨, 周晋兵, 何东健, 等. 基于改进CenterNet的小麦条锈病菌夏孢子自动检测方法[J]. 农业机械学 报, 2021, 52(12): 233-241. Lei Yu, Zhou Jinbing, He Dongjian, et al. Automatic detection method for urediniospores of wheat stripe rust based on improved CenterNet model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 233-241. [10] Zhang Ying, Li Jiangtao, Tang Fang, et al. An automatic detector for fungal spores in microscopic images based on deep learning [J]. Applied Engineering in Agriculture,2021, 37(1): 85-94. [11] 李伟强, 王东, 宁政通, 等. 计算机视觉下的果实目标检测算法综述[J]. 计算机与现代化, 2022(6): 87-95. Li Weiqiang, Wang Dong, Ning Zhengtong, et al. Survey of fruit object detection algorithms in computer vision [J]. Computer and Modernization, 2022(6): 87-95. [12] Wang Qifan, Cheng Man, Huang Shuo, et al. A deep learning approach incorporating YOLOv5 and attention mechanisms for field realtime detection of the invasive weed Solanum rostratum Dunal seedlings [J]. Computers and Electronics in Agriculture, 2022, 199: 107194. [13] 商枫楠, 周学成, 梁英凯, 等. 基于改进YOLOX的自然环境中火龙果检测方法[J]. 智慧农业(中英文), 2022, 4(3): 120-131. Shang Fengnan, Zhou Xuecheng, Liang Yingkai, et al. Detection method for dragon fruit in natural environment based on improved YOLOX [J]. Smart Agriculture, 2022, 4(3): 120-131. [14] 黄少华, 梁喜凤. 基于改进YOLOv5的茶叶杂质检测算法[J]. 农业工程学报, 2022, 38(17): 329-336. Huang Shaohua, Liang Xifeng. Detecting the impurities in tea using an improved YOLOv5 model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(17): 329- 336. [15] 苏斐, 张泽旭, 赵妍平, 等. 基于轻量化YOLO-v3的绿熟期番茄检测方法[J]. 中国农机化学报, 2022, 43(3): 132-137. Su Fei, Zhang Zexu, Zhao Yanping, et al. Detection of mature green tomato based on lightweight YOLO-v3 [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 132- 137. [16] Shi Rui, Li Tianxing, Yamaguchi Y. An attributionbased pruning method for realtime mango detection with YOLO network [J]. Computers and Electronics in Agriculture, 2020(169): 105214. [17] 张兆国, 张振东, 李加念, 等. 采用改进YoloV4模型检测复杂环境下马铃薯[J]. 农业工程学报, 2021, 37(22): 170-178. Zhang Zhaoguo, Zhang Zhendong, Li Jianian, et al. Potato detection in complex environment based on improved YoloV4 model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 170-178. [18] Wang Chienyao, Liao Hongyuan, Wu Yuehua, et al. CSPNetA new backbone that can enhance learning capability of CNN [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020: 1571-1580. [19] He Kaiminng, Zhang Xiangyu, Ren Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2014: 346-361. [20] 尚钰莹, 张倩如, 宋怀波. 基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J]. 农业工程学 报, 2022, 38(9): 222-229. Shang Yuying, Zhang Qianru, Song Huaibo. Application of deep learning using YOLOv5s to apple flower detection in natural scenes [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 222-229. [21] 黄丽明, 王懿祥, 徐琪, 等. 采用YOLO算法和无人机影像的松材线虫病异常变色木识别[J]. 农业工程 学报, 2021, 37(14): 197-203. Huang Liming, Wang Yixiang, Xu Qi, et al. Recognition of abnormally discolored trees caused by pine wilt disease using YOLO algorithm and UAV images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 197-203. [22] Lin T Y, Piotr D, Girshick R, et al. Feature Pyramid Networks for object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117- 2125. [23] Liu Shu, Qi Lu, Qin Haifang, et al. Path aggregation network for instance segmentation [C] . Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759 -8768. [24] 巢渊, 刘文汇, 唐寒冰, 等. 基于改进YOLO-v4的室内人脸快速检测方法[J]. 计算机工程与应用, 2022, 58(14): 105-113. Chao Yuan, Liu Wenhui, Tang Hanbing, et al. Fast indoor face detection method based on improved YOLO-v4 [J]. Computer Engineering and Applications, 2022, 58(14): 105-113. [25] 田枫, 贾昊鹏, 刘芳. 改进YOLOv5的油田作业现场安全着装小目标检测[J]. 计算机系统应用, 2022, 31(3): 159-168. Tian Feng, Jia Haopeng, Liu Fang. Small target detection in oilfield operation field based on improved YOLOv5 [J]. Computer Systems & Applications, 2022, 31(3): 159-168. [26] Han Kai, Wang Yunhe, Tian Qi, et al. GhostNet: More features from cheap operations [C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 1577-1586. [27] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19. [28] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2014: 740-755. [29] 张志远, 罗铭毅, 郭树欣, 等. 基于改进YOLOv5的自然环境下樱桃果实识别方法[J]. 农业机械学报, 2022, 53(s1): 232-240. Zhang Zhiyuan, Luo Mingyi, Guo Shuxin, et al. Cherry fruit detection method in natural scene based on improved YOLOv5 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(s1): 232-240. [30] 宋怀波, 王亚男, 王云飞, 等. 基于YOLOv5s的自然场景油茶果识别方法[J]. 农业机械学报, 2022, 53(7): 234-242. Song Huaibo, Wang Yanan, Wang Yunfei, et al. Camellia oleifera fruit detection in natural scene based on YOLOv5s [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 234-242. [31] Zheng Zhaohui, Wang Ping, Liu Wei, et al. DistanceIou loss: Faster and better learning for bounding box regression [C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020(34): 7. |
[1] | Yang Chenglei, , Lan Yubin, , Wang Qingyu, , Bie Xiaoting, , Shan Changfeng, , Wang Guobin, . Application of neural network in greenhouse microclimate prediction [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 89-99. |
[2] | Fu Hao, , Zhao Xueguan, Zhai Changyuan, , Zheng Kang, Zheng Shenyu, Wang Xiu. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207. |
[3] | Duan Yufei, , Dong Geng, Sun Jiwei, Wang Yanqing, . Sorting model of camellia fruit shells and tea seeds based on SE-ResNet network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 89-95. |
[4] | Li Guangming, Gong Haobin, Yuan Kai. Research on lightweight pepper cluster detection based on YOLOv5s [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 153-158. |
[5] | Wang Yubo, , Ma Tinghuai, Chen Guangming. Weeds detection in farmland based on a modified YOLOv5 algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 167-173. |
[6] | Xuan Menghui, Zhao Sixia, Xu Liyou, Chen Xiaoliang, Li Tuanfei. Assembly quality inspection method of combine harvester based on improved VMD and LSTM [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 132-140. |
[7] | Wang Xinyan, Yi Zhengyang.. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 171-176. |
[8] | He Yushuang, Wang Zhuo, Wang Xiangping, Xiao Jin, Luo Youyi, Zhang Junfeng.. Research progress of deep learning in crop disease image recognition [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 148-155. |
[9] | Li Zimao, Li Jiahui, Yin Fan, Tie Jun, Wu Qianbao.. Dense citrus detection algorithm based on deformable convolution and SimAM attention [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 156-162. |
[10] | Ren Hao, Li Li, Lu Shibo, Chen Jingyao, Zhang Yunfeng.. Identification method of mulberry tree branches in complex natural environments based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 182-188. |
[11] | Yang Wenji, Hu Wenchao, Zhao Yingding, Qian Wenbin.. Research on plant disease detection algorithm based on improved Yolov5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 108-115. |
[12] | Wang Ying, Wang Feng, Li Wei, Wang Yanyan, Wang Yingbiao, Luo Xin.. Study on improved YOLOv5 algorithm for fruit and vegetable detection in complex environments [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 185-191. |
[13] | Li Dongsheng, Hu Wenze, Lan Yubin, Fan Minghong, Li Cuiyun, Zhu Junke.. Research status and prospect of deep learning in weed recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 137-144. |
[14] | Wang Xiaoting, Zhao Zhan, Wang Yang, Li Lin. . Intelligent detection algorithm of plant phenotype based on improved Mask R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 151-157. |
[15] | Sun Yifei, Liu Pingzeng, Zhang Yan, Song Changqing, Zhang Dalei, Ma Xuewen. . Research on extraction of winter wheat planting area in Weifang City based on Sentinel-2A remote sensing image [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 98-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296