[1] 钟兴, 刘永华, 孙昌权. 基于物联网的水产养殖智能监控系统设计[J]. 中国农机化学报, 2018, 39(3): 70-73.
Zhong Xing, Liu Yonghua, Sun Changquan, Design of aquaculture intelligent monitoring system based on internet of things [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(3): 70-73.
[2] 巫莉莉, 黄志宏, 何斌斌, 等. 智能算法在水体氨氮含量预测中的应用研究综述[J]. 中国农机化学报, 2019, 40(6): 191-196.
Wu Lili, Huang Zhihong, He Binbin, et al. Summary of research on application of intelligent algorithms in prediction of ammonia nitrogen content in water [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(6): 191-196.
[3] Ahmed N, Turchini G M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation[J]. Journal of Cleaner Production, 2021, 297: 126604.
[4] Ren Q, Wang X, Li W, et al. Research of dissolved oxygen prediction in recirculating aquaculture systems based on deep belief network[J]. Aquacultural Engineering, 2020, 90: 102085.
[5] Xiao R, Wei Y, An D, et al. A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems [J]. Reviews in Aquaculture, 2019, 11(3): 863-895.
[6] Schumann M, Brinker A. Understanding and managing suspended solids in intensive salmonid aquaculture: A review [J]. Reviews in Aquaculture, 2020, 12(4): 2109-2139.
[7] Ray A J, Drury T H, Cecil A. Comparing clearwater RAS and biofloc systems: Shrimp (Litopenaeus vannamei) production, water quality, and biofloc nutritional contributions estimated using stable isotopes [J]. Aquacultural Engineering, 2017, 77: 9-14.
[8] 郭凯, 赵文, 董双林, 等. “海蜇—缢蛏—牙鲆—对虾”混养池塘悬浮颗粒物结构及其有机碳库储量[J]. 生态学报, 2016, 36(7): 1872-1880.
Guo Kai, Zhao Wen, Dong Shuanglin, et al. Structure of suspended particles and organic carbon storage in jellyfishshellfishfishprawn polyculture ponds [J]. Acta Ecologica Sinica, 2016, 36(7): 1872-1880.
[9] Holan A B, Wold P A, Leiknes T O. Membrane performance and fouling behavior of membrane bioreactors installed in marine recirculating aquaculture systems [J]. Aquacultural Engineering, 2014, 58: 45-51.
[10] Li L, Shen Y, Yang W, et al. Effect of different stocking densities on fish growth performance: A metaanalysis [J]. Aquaculture, 2021, 544: 737152.
[11] 皮坤, 张敏, 李庚辰, 等. 人工饵料对主养黄颡鱼和主养草鱼池塘沉降颗粒有机质贡献的同位素示踪[J]. 水生生物学报, 2014, 38(5): 929-937.
Pi Kun, Zhang Min, Li Gengchen, et al. Carbon and nitrogen stable isotope as tracers to source artificial organic matter of sedimentary particle in grass carp and yellow catfish polycultured ponds[J]. Acta Hydrobiologica Sinica, 2014, 38(5): 929-937.
[12] 季明东. 海水循环水养殖系统悬浮颗粒物去除机制及其粒径分布特征研究[D]. 杭州: 浙江大学, 2020.
Ji Mingdong. A study on removal mechanisms of suspended solids and its size distribution characteristics in marine recirculating aquaculture systems [D]. Hangzhou: Zhejiang University, 2020.
[13] 皮坤, 张敏, 李庚辰, 等. 不同养殖模式池塘沉降颗粒营养物质组成特征[J]. 长江流域资源与环境, 2015, 24(1): 143-148.
Pi Kun, Zhang Min, Li Gengchen, et al. Characteristics of nutrient in sedimentary particles in different aquaculture models ponds [J]. Resources and Environment in the Yangtze Basin, 2015, 24(1): 143-148.
[14] 杨建雷, 高勤峰, 董双林, 等. 草鱼、鲢鱼和鲤鱼混养池塘中浮游生物和悬浮颗粒物组成变化的研究[J]. 中国海洋大学学报(自然科学版), 2011, 41(10): 23-29.
Yang Jianlei, Gao Qinfeng, Dong Shuanglin, et al. Effect of silver carp culture on the composition of plankton and suspended particulate matter in polyculture ponds [J]. Periodical of Ocean University of China, 2011, 41(10): 23-29.
[15] 段姗杉, 杨晨, 宋协法, 等. 循环水养殖系统微细悬浮颗粒的分布规律研究[J]. 渔业现代化, 2021, 48(2): 22-28.
Duan Shanshan, Yang Chen, Song Xiefa,et al. Distribution of suspended fine particles in recirculating aquaculture system[J]. Fishery Modernization, 2021, 48(2): 22-28.
[16] Xu Z, Boyd C E. Reducing the monitoring parameters of fish pond water quality[J]. Aquaculture, 2016, 465: 359-366.
[17] Sarkar S, Ghosh P, Sil A K, et al. Suspended particulate matter dynamics act as a driving force for single pond sewage stabilization system [J]. Ecological Engineering, 2014, 69: 206-212.
[18] 罗国芝, 陈晓庆, 谭洪新. 养殖用水重复利用过程中悬浮固体物的性质及控制[J]. 渔业现代化, 2017, 44(3): 15-24.
Luo Guozhi, Chen Xiaoqing, Tan Hongxin, Properties and control of suspended solids during reuse of aquaculture water [J]. Fishery Modernization, 2017, 44(3): 15-24.
[19] 李宏伟, 张清靖, 刘青, 等. 循环水养殖系统中悬浮颗粒物去除工艺研究概况[J]. 水产科学, 2015, 34(8): 527-532.
Li Hongwei, Zhang Qingjing, Liu Qing, et al. Research progress of suspended solids treatment process in recirculating aquaculture system[J]. Fisheries Science, 2015, 34(8): 527-532.
[20] Fleite S N, García A R, De los Santos C,et al. Simulation and optimization of a lamella settler for cattle feedlot wastewater treatment and nutrients recovery. Experimental validation in the field [J]. Heliyon, 2020, 6(12): e05840.
[21] 张成林, 杨菁, 张宇雷, 等. 去除养殖水体悬浮颗粒的多向流重力沉淀装置设计及性能[J]. 农业工程学报, 2015, 31(S1): 53-60.
Zhang Chenglin, Yang Jing, Zhang Yulei, et al. Design and performance of multiway gravity device on removing suspended solids in aquaculture water [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(S1): 53-60.
[22] 柴金龙, 罗烽, 凌文森, 等. 工厂化养鱼池底沉淀分离装置的试验研究[J]. 宁夏工程技术, 2009, 8(2): 137-140.
Chai Jinglong, Luo Feng, Ling Wensen, et al. Experiment and research of deposit separated device in industrial fish farming system [J]. Ningxia Engineering Technology, 2009, 8(2): 137-140.
[23] 李建平, 吴康, 何相逸, 等. 基于CFD的养殖水体固液旋流分离装置数值模拟与验证[J]. 农业工程学报, 2019, 35(11): 182-187.
Li Jianping, Wu Kang, He Xiangyi, et al. Numerical simulation and validation of solidliquid cyclone separation device for aquaculture water based on CFD[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 182-187.
[24] Pfeiffer T J, Osborn A, Davis M. Particle sieve analysis for determining solids removal efficiency of water treatment components in a recirculating aquaculture system [J]. Aquacultural Engineering, 2008, 39(1): 24-29.
[25] 孙大川, 吴嘉敏. 泡沫分离器在循环水养殖系统中的水处理效果[J]. 上海水产大学学报, 2008(1): 113-117.
Sun Dachuan, Wu Jiamin, Water treatment efficiency of foam fractionator in the recirculating aquaculture system[J]. Journal of Shanghai Fisheries University, 2008(1): 113-117.
[26] Gregersen K J D J, Pedersen L F, Pedersen P B, et al. Foam fractionation and ozonation in freshwater recirculation aquaculture systems[J]. Aquacultural Engineering, 2021, 95: 102195.
[27] Gesto M, de Jesus Gregersen K J, Pedersen L F. Effects of ozonation and foam fractionation on rainbow trout condition and physiology in a smallscale freshwater recirculation aquaculture system[J]. Aquaculture, 2022, 557: 738312.
[28] Honn K V, Glezman G M, Chavin W. A high capacity ozone generator for use in aquaculture and water processing [J]. Marine Biology, 1976, 34(3): 211-216.
[29] 宋奔奔, 倪琦, 张宇雷, 等. 臭氧对大菱鲆半封闭循环水养殖系统水质净化研究[J]. 渔业现代化, 2011, 38(6): 11-15.
Song Benben, Ni Qi, Zhang Yulei, et al. Effect of ozone on the purification of water in partialreused aquaculture system for turbot (Scophthalmus maximus) [J]. Fishery Modernization, 2011, 38(6): 11-15.
[30] 陶雷, 余玲, 吕石祥, 等. 水产养殖增氧臭氧消毒一体机的设计[J]. 南方农机, 2017, 48(23): 35, 42.
[31] Guo J, Hu J, Tao Y, et al. Effect of ozone on the performance of a hybrid ceramic membranebiological activated carbon process[J]. Journal of Environmental Sciences, 2014, 26(4): 783-791.
[32] 江滔, 温志国, 马旭光, 等. 畜禽粪便固液分离技术特点及效率评估[J]. 农业工程学报, 2016, 32(S2): 218-225.
Jiang Tao, Wen Zhiguo, Ma Xuguang, et al. Characteristics and efficiency evaluation of livestock slurry separation technologies[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 218-225.
[33] 潘雁艳. 养殖用微滤机反冲洗装置构成及喷嘴选型[J]. 福建农机, 2018(3): 31-34.
[34] 陈建平, 曹冬冬. 水处理微滤机过滤能力和堵塞问题的研究[J]. 天津工业大学学报, 2013, 32(5): 57-60.
Chen Jianping, Cao Dongdong. Research of filtering ability and blocking problems of water treatment microfilter [J]. Journal of Tianjin Polytechnic University, 2013, 32(5): 57-60.
[35] Ali S A. Design and evaluate a drum screen filter driven by undershot waterwheel for aquaculture recirculating systems [J]. Aquacultural Engineering, 2013, 54: 38-44.
[36] Walker P, Kelley T. Comparison of a static gravity screenroll press combination separator to a PAM-assisted gravity belt thickener system for swine waste slurry solids separation[J]. Bioresource Technology, 2005, 96(5): 571-576.
[37] 周高华, 方善如, 张剑鸣, 等. 含油污泥脱水设备与技术[J]. 化工机械, 2003(5): 306-311.
Zhou Gaohua, Fang Shanru, Zhang Jianming, et al. Dewatering technology and devices for oily sludge[J]. Chemical Engineering & Machinery, 2003(5): 306-311.
[38] 闫瑛. 卧螺式离心机在再造烟叶生产中的应用[J]. 中华纸业, 2018, 39(16): 48-52.
Yan Ying. Application of horizontal screw centrifuge in reconstituted tobacco process [J]. China Pulp & Paper Industry, 2018, 39(16): 48-52.
[39] 李雨桓, 周沁宇, 黄英才, 等. 人工湿地对不同废水的净化效果研究[J]. 河南科技, 2021, 40(8): 146-148.
Li Yuheng, Zhou Qinyu, Huang Yingcai, et al. Research on the purification effect of constructed wetland on different wastewater [J]. Henan Science and Technology, 2021, 40(8): 146-148.
[40] 高锋, 杨朝晖, 李晨, 等. 秋茄人工湿地净化循环海水养殖废水效果[J]. 农业工程学报, 2012, 28(17): 192-198.
Gao Feng, Yang Chaohui, Li Chen, et al. Effect of saline aquaculture wastewater treatment by constructed mangrove wetland [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17): 192-198.
[41] Cheng P, Chen D, Liu W, et al. Autoflocculation microalgae species Tribonema sp. and Synechocystis sp. with TIPL pretreatment to improve swine wastewater nutrient removal [J]. Science of the Total Environment, 2020, 725: 138263.
[42] 王芬, 段洪利, 刘亚飞, 等. 人工湿地处理含盐富营养化水的植物根际与非根际菌群分析[J]. 环境工程学报, 2020, 14(7): 1844-1851.
Wang Fen, Duan Hongli, Liu Yafei, et al. Analysis of bacterial community at the rhizosphere and nonrhizosphere of plants in constructed wetland treating brackish eutrophic water[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1844-1851.
[43] 程梦雨, 程梦奇, 汪祝方, 等. 不同耐盐植物协同复合填料强化人工湿地净化含盐废水[J]. 环境工程, 2021, 39(8): 7-14.
Cheng Mengyu, Cheng Mengqi, Wang Zhufang, et al. Effect of different salttolerant plants cooperating with compound packing to strengthen constructed wetland to purify the salty wastewater[J]. Environmental Engineering, 2021, 39(8): 7-14.
|