Journal of Chinese Agricultural Mechanization ›› 2022, Vol. 43 ›› Issue (9): 137-144.DOI: 10.13733/j.jcam.issn.20955553.2022.09.019
Previous Articles Next Articles
Li Dongsheng, Hu Wenze, Lan Yubin, Fan Minghong, Li Cuiyun, Zhu Junke.
Online:
2022-09-15
Published:
2022-08-16
李东升1,胡文泽1,兰玉彬1, 2,范明洪1,李翠云1,朱俊科1
基金资助:
CLC Number:
Li Dongsheng, Hu Wenze, Lan Yubin, Fan Minghong, Li Cuiyun, Zhu Junke.. Research status and prospect of deep learning in weed recognition[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 137-144.
李东升, 胡文泽, 兰玉彬, 范明洪, 李翠云, 朱俊科. 深度学习在杂草识别领域的研究现状与展望[J]. 中国农机化学报, 2022, 43(9): 137-144.
[1] 强胜. 我国杂草学研究现状及其发展策略[J]. 植物保护, 2010, 36(4): 1-5. Qiang Sheng. Current status and development strategy for weed science in China [J]. Plant Protection, 2010, 36(4): 1-5. [2] 陈德润, 王书茂, 王秀. 农田杂草识别技术的现状与展望[J]. 中国农机化, 2005(2): 35-38. Chen Derun, Wang Shumao, Wang Xiu. Status and prospect for recognition technology of farm weeds [J]. Chinese Agricultural Mechanization, 2005(2): 35-38. [3] 李香菊. 近年我国农田杂草防控中的突出问题与治理对策[J]. 植物保护, 2018, 44(5): 77-84. Li Xiangju. Main problems and management strategies of weeds in agricultural fields in China recent year [J]. Plant Protection, 2018, 44(5): 77-84. [4] 马志艳, 朱熠, 杨磊. 基于视觉的苗期作物株间除草关键技术研究现状[J]. 中国农机化学报, 2020, 41(2): 32-38. Ma Zhiyan, Zhu Yi, Yang Lei. Research status of key techniques of interplant weeding in seedling crops based on vision [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 32-38. [5] 杨峰山, 孙丛, 鲍霞霞, 等. 5类化学除草剂在作物中残留分析的研究进展[J]. 中国农学通报, 2021, 37(10): 136-141. Yang Fengshan, Sun Cong, Bao Xiaxia, et al. Residue analysis of five chemical herbicides in crops: Research progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 136-141. [6] Champ J, MoraFallas A, Goau H, et al. Instance segmentation for the fine detection of crop and weed plants by precision agricultural robots [J]. Applications in Plant Sciences, 2020, 8(7). [7] Hasan A, Sohel F, Diepeveen D, et al. A survey of deep learning techniques for weed detection from images [J]. Computers and Electronics in Agriculture, 2021, 184(3): 106067. [8] Hong J, Lan Y, Yue X, et al. Adaptive target spray system based on machine vision for plant protection UAV [J]. International Journal of Precision Agricultural Aviation, 2018, 1(1): 65-71. [9] 任全会, 杨保海. 图像处理技术在田间杂草识别中应用研究[J]. 中国农机化学报, 2020, 41(6): 154-158. Ren Quanhui, Yang Baohai. Application of image processing technology in weed recognition in field [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(6): 154-158. [10] 李扬. 机器学习在农业领域应用现状与前景[J]. 安徽农学通报, 2021, 27(1): 164-165, 174. Li Yang. Application status and prospect of machine learning in agriculture [J]. Anhui Agricultural Science Bulletin, 2021, 27(1): 164-165, 174. [11] 吕盛坪, 李灯辉, 冼荣亨. 深度学习在我国农业中的应用研究现状[J]. 计算机工程与应用, 2019, 55(20): 24-33, 51. Lü Shengping, Li Denghui, Xian Rongheng. Research status of deep learning in agriculture of China [J]. Computer Engineering and Applications, 2019, 55(20): 24-33, 51. [12] Dos Santos Ferreira A, Freitas D M, Da Silva G G, et al. Unsupervised deep learning and semiautomatic data labeling in weed discrimination [J]. Computers and Electronics in Agriculture, 2019, 165: 104963. [13] 李志伟. 机器学习发展及几种学习方式[J]. 产业与科技论坛, 2016, 15(10): 198-199. [14] 陈嘉博. 机器学习算法研究及前景展望[J]. 信息通信, 2017(6): 5-6. [15] 孙志军, 薛磊, 许阳明, 等. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8): 2806-2810. Sun Zhijun, Xue Lei, Xu Yangming, et al. Overview of deep learning [J]. Application Research of Computers, 2012, 29(8): 2806-2810. [16] 谭笑枫, 李广帅. 深度学习发展综述[A]. 中国地球物理学会国家安全地球物理专业委员会、陕西省地球物理学会军事地球物理专业委员会. 国家安全地球物理丛书(十五)——丝路环境与地球物理[C]. 中国地球物理学会国家安全地球物理专业委员会、陕西省地球物理学会军事地球物理专业委员会: 中国地球物理学会, 2019. [17] Lecun Y, Bottou L. Gradientbased learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [18] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. [19] 邓向武, 齐龙, 马旭, 等. 基于多特征融合和深度置信网络的稻田苗期杂草识别[J]. 农业工程学报, 2018, 34(14): 165-172. Deng Xiangwu, Qi Long, Ma Xu, et al. Recognition of weeds at seedling stage in paddy fields using multifeature fusion and deep belief networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 165-172. [20] Goodfellow I, PougetAbadie J, Mirza M, et al. Generative adversarial nets [J]. Advances in neural information processing systems, 2014, 27: 2672-2680. [21] Fawakherji M, Potena C, Prevedello I, et al. Data augmentation using GANs for crop/weed segmentation in precision farming [C]. 2020 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2020: 279-284. [22] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural networks [J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. [23] 陈辉东, 丁小燕, 刘艳霞. 基于深度学习的目标检测算法综述[J]. 北京联合大学学报, 2021, 35(3): 39-46. Chen Huidong, Ding Xiaoyan, Liu Yanxia. Review of target detection algorithm based on deep learning [J]. Journal of Beijing Union University, 2021, 35(3): 39-46. [24] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [J]. IEEE Computer Society, 2013. [25] Girshick R. Fast R-CNN [J]. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015. [26] Ren Shaoqing, He Kaiming, Ross Girshick, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. [27] Redmon J, Farhadi A. YOLOv3: An incremental improvement [J]. arXiv eprints, 2018. [28] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, realtime object detection [C]. Computer Vision & Pattern Recognition. IEEE, 2016. [29] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector [C]. European conference on computer vision. Springer, Cham, 2016: 21-37. [30] 卢旭, 刘钊. 基于深度学习的图像语义分割技术综述[J]. 软件导刊, 2021, 20(1): 242-244. Lu Xu, Liu Zhao. A review of image semantic segmentation based on deep learning [J]. Software Guide, 2021, 20(1): 242-244. [31] 黄旭, 张世义, 李军. 图像分割技术研究综述[J]. 装备机械, 2021(2): 6-9. [32] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation [C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2015: 3431-3440. [33] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoderdecoder architecture for image segmentation [J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495. [34] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and ComputerAssisted Intervention, 2015. [35] 赵小虎, 李晓. 基于语义分割的农作物病害识别综述研究[J]. 现代计算机, 2021(18): 122-126. Zhao Xiaohu, Li Xiao. Survey of crop disease recognition based on semantic segmentation [J]. Modern Computer, 2021(18): 122-126. [36] He Kaiming, Gkioxari G, Dolla'r P, et al. Mask R-CNN [C]. IEEE Transactions on Pattern Analysis & Machine Intelligence. IEEE, 2017. [37] 刘钦. 乡村振兴战略背景下我国蔬菜产业发展分析[J]. 北方园艺, 2020(4): 142-147. Liu Qin. Analysis of vegetable industry development under the background of rural revitalization strategy [J]. Northern Horticulture, 2020(4): 142-147. [38] Osorio K, Puerto A, Pedraza C, et al. A deep learning approach for weed detection in lettuce crops using multispectral images [J]. Agri Engineering, 2020, 2(3): 471-488. [39] Gao J, French A P, Pound M P, et al. Deep convolutional neural networks for imagebased Convolvulus sepium detection in sugar beet fields [J]. Plant Methods, 2020, 16(1): 1-12. [40] 尚建伟, 蒋红海, 喻刚, 等. 基于深度学习的杂草识别系统[J]. 软件导刊, 2020, 19(7): 127-130. Shang Jianwei, Jiang Honghai, Yu Gang, et al. Weed identification system based on deep learning [J]. Software Guide, 2020, 19(7): 127-130. [41] 喻刚, 蒋红海, 孙腾飞, 等. 基于深度学习的白菜田杂草分割[J]. 软件, 2020, 41(4): 211-215. Yu Gang, Jiang Honghai, Sun Tengfei, et al. Weed identification in cabbage field based on deep learning [J]. Computer Engineering & Software, 2020, 41(4): 211-215. [42] EspejoGarcia B, Mylonas N, Athanasakos L, et al. Combining generative adversarial networks and agricultural transfer learning for weeds identification [J]. Biosystems Engineering, 2021, 204: 79-89. [43] 张宋超, 薛新宇, 孙涛, 等. 植保无人飞机油菜杂草防治与效果评估研究[J]. 中国农机化学报, 2019, 40(9): 48-53, 59. Zhang Songchao, Xue Xinyu, Sun Tao, et al. Study on weed control of plant protection UAV and effect evaluation in rape filed [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(9): 48-53, 59. [44] 张乐, 金秀, 傅雷扬, 等. 基于Faster R-CNN深度网络的油菜田间杂草识别方法[J]. 激光与光电子学进展, 2020, 57(2): 304-312. Zhang Le, Jin Xiu, Fu Leiyang, et al. Recognition method for weeds in rapeseed field based on Faster R-CNN deep network [J]. Laser & Optoelectronics Progress, 2020, 57(2): 304-312. [45] Abdalla A, Cen H, Wan L, et al. Finetuning convolutional neural network with transfer learning for semantic segmentation of groundlevel oilseed rape images in a field with high weed pressure [J]. Computers and Electronics in Agriculture, 2019, 167: 105091. [46] Asad M H, Bais A. Weed detection in canola fields using maximum likelihood classification and deep convolutional neural network [J]. Information Processing in Agriculture, 2020, 7(4): 535-545. [47] Partel V, Kakarla S C, Ampatzidis Y. Development and evaluation of a lowcost and smart technology for precision weed management utilizing artificial intelligence [J]. Computers and Electronics in Agriculture, 2019, 157: 339-350. [48] 卢秀茹, 贾肖月, 牛佳慧. 中国棉花产业发展现状及展望[J]. 中国农业科学, 2018, 51(1): 26-36. Lu Xiuru, Jia Xiaoyue, Niu Jiahui. The present situation and prospects of cotton industry development in China [J]. Scientia Agricultura Sinica, 2018, 51(1): 26-36. [49] EspejoGarcia B, Mylonas N, Athanasakos L, et al. Towards weeds identification assistance through transfer learning [J]. Computers and Electronics in Agriculture, 2020, 171: 105306. [50] 许燕, 温德圣, 周建平, 等. 基于Faster R-CNN的新疆棉花幼苗与杂草识别方法[J]. 排灌机械工程学报, 2021, 39(6): 602-607. Xu Yan, Wen Desheng, Zhou Jianping, et al. Identification method of cotton seedlings and weeds in Xinjiang based on Faster R-CNN [J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(6): 602-607. [51] 彭明霞, 夏俊芳, 彭辉. 融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209. Peng Mingxia, Xia Junfang, Peng Hui. Efficient recognition of cotton and weed in field based on Faster R-CNN by integrating FPN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 202-209. [52] Chen D, Lu Y, Li Z, et al. Performance evaluation of deep transfer learning on multiclass identification of common weed species in cotton production systems[J]. Computers and Electronics in Agriculture, 2022, 198: 107091. [53] 彭文, 兰玉彬, 岳学军, 等. 基于深度卷积神经网络的水稻田杂草识别研究[J]. 华南农业大学学报, 2020, 41(6): 75-81. Peng Wen, Lan Yubin, Yue Xuejun, et al. Research on paddy weed recognition based on deep convolutional neural network [J]. Journal of South China Agricultural University, 2020, 41(6): 75-81. [54] Huang Huasheng, Lan Yubin, Yang Aqing, et al. Deep learning versus objectbased image analysis (OBIA) in weed mapping of UAV imagery [J]. International Journal of Remote Sensing, 2020, 41(9): 3446-3479. [55] Zhang Rufei, Wang Cong, Hu Xiaoping, et al. Weed location and recognition based on UAV imaging and deep learning [J]. International Journal of Precision Agricultural Aviation, 2018, 1(1): 25-31. [56] Kumar J R D, Babu C G, Priyadharsini K. An experimental investigation to spotting the weeds in rice field using deepnet [J]. Materials Today: Proceedings, 2021, 45(12): 8041-8053. [57] Ma Xu, Deng Xiangwu, Qi Long, et al. Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields [J]. PLoS ONE, 2019, 14(4). [58] 崔爱民, 张久刚, 张虎, 等. 我国玉米生产现状及发展变革[J]. 中国农业科技导报, 2020, 22(7): 10-19. Cui Aimin, Zhang Jiugang, Zhang Hu, et al. Preliminary exploration on current situation and development of maize production in China [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 10-19. [59] 徐艳蕾, 何润, 翟钰婷, 等. 基于轻量卷积网络的田间自然环境杂草识别方法[J/OL]. 吉林大学学报(工学版): 1-10[2021-09-03]. [60] Mads Dyrmann, Henrik Karstoft, Henrik Skov Midtib. Plant species classification using deep convolutional neural network [J]. Biosystems Engineering, 2016, 151: 72-80. [61] 权龙哲, 吴冰, 毛首人. 基于Mask R-CNN农田杂草实例分割与叶龄识别方法[J]. 东北农业大学学报, 2021, 52(4): 65-76. Quan Longzhe, Wu Bing, Mao Shouren. Method for segmentation and leaf age recognition of farmland weeds based on Mask R-CNN [J]. Journal of Northeast Agricultural University, 2021, 52(4): 65-76. [62] Wang Aichen, Zhang Wen, Wei Xinhua. A review on weed detection using groundbased machine vision and image processing techniques [J]. Computers and Electronics in Agriculture, 2019, 158: 226-240. |
[1] | Wang Xiaoting, Zhao Zhan, Wang Yang, Li Lin. . Intelligent detection algorithm of plant phenotype based on improved Mask R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 151-157. |
[2] | Sun Yifei, Liu Pingzeng, Zhang Yan, Song Changqing, Zhang Dalei, Ma Xuewen. . Research on extraction of winter wheat planting area in Weifang City based on Sentinel-2A remote sensing image [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 98-105. |
[3] | Zhang Sanlin, Zhang Liping, Zheng Weiqiang, Guo Zhuang, Fu Ziqiang. . Identification and localization of walnut varieties based on YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 167-172. |
[4] | Shi Fangqing, Wang Hulin, Huang Hua. . Research on potato buds detection and recognition based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 159-165. |
[5] | Cao Jinfeng, Shen Dagang, Guo Jihong, Liu Peng, Li Ce, Lan Tianhe. . Study of garlic scale bud orientation recognition based on CNN and SVM classification optimization [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 134-139. |
[6] | Lei Xuemei, Zhang Guangqiang, Yao Qi, Liu Weiwei, Qiu Shuai. . Research on automatic recognition of agricultural machine image based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 140-147. |
[7] | Chen Guofang, Chen Zhaoying, Wang Yuliang, Wang Jinxing, Fan Guoqiang, Li Hanqing.. Research on detection method of apple flower based on dataenhanced deep learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 148-155. |
[8] | Li Xianzhe, Zhang Hui, Xu Liyou, Liu Mengnan, Yan Xianghai, Zhang Mingzhu.. Research on power system matching characteristics of the hybrid hydraulic and mechanical tractor [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 46-52. |
[9] | Zhang Yanbin, Du Jianmin, Wang Yuan, Pi Weiqiang, Gao Xinchao.. Terrain classification in desert steppe based on UAV hyperspectral remote sensing and 3D-ResNet [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 66-73. |
[10] | He Ying, Chen Dinghao, Peng Lin.. Research on object detection algorithm of economic forestry pests based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 106-115. |
[11] | Xiang Xinjian, Song Xiaomin, Zheng Yongping, Wang Haibo, Fang Zhengyang.. Research on embedded face detection based on MobileNet-YOLO [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 124-130. |
[12] | Dong Ping, Wei Menghua, Shi Lei, Guo Wei.. Research and application of transfer learning in identification of maize leaf diseases [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 146-152. |
[13] | Zhang Jicheng, Li Deshun.. Ripe strawberry recognition method based on deep residual learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 136-142. |
[14] | Chen Jiqing, Wei Depeng, Long Teng, Luo Tian, Wang Huabin.. Pest classification based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(11): 188-194. |
[15] | Guo Wenjuan, Feng Quan, Li Xiangzhou.. Research progress of convolutional neural network model based on crop disease detection and recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 157-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296