v. Research on greenhouse environment prediction model based on SO-BP neural network[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 94-99.
[ 1 ]晋春, 毛罕平, 马国鑫, 等. 基于改进遗传算法的温室环境动态优化控制[J]. 江苏大学学报(自然科学版), 2022, 43(2): 169-177.
Jin Chun, Mao Hanping, Ma Guoxin, et al. Dynamic optimal control of greenhouse environment based on improved genetic algorithm [J]. Journal of Jiangsu University (Natural Science Edition), 2022, 43(2): 169-177.
[ 2 ] 乔小丹, 郑文刚, 张馨, 等. 基于LSTM-GRU的日光温室环境预测方法研究[J]. 江苏农业科学, 2022, 50(16): 211-218.
[ 3 ] 李师. 基于改进灰狼算法的温室温湿度预测与控制[D]. 保定: 河北农业大学, 2021.
[ 4 ] 张建超, 单慧勇, 景向阳, 等. 基于Elman神经网络的温室环境因子预测方法[J]. 中国农机化学报, 2021, 42(8): 203-208.
Zhang Jianchao, Shan Huiyong, Jing Xiangyang, et al. Prediction method of greenhouse environmental factors based on Elman neural network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 203-208.
[ 5 ] 田东, 韦鑫化, 王悦, 等. 基于MA-ARIMA-GASVR的食用菌温室温度预测[J]. 农业工程学报, 2020, 36(3): 190-197.
Tian Dong, Wei Xinhua, Wang Yue, et al. Prediction of temperature in edible fungi greenhouse based on MA-ARIMA-GASVR [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 190-197.
[ 6 ] 徐宇,冀荣华. 基于复数神经网络的智能温室温度预测研究[J]. 中国农机化学报, 2019, 40(4): 174-178.
Xu Yu, Ji Ronghua. Research on temperature prediction of intelligent greenhouse based on complex neural network [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 174-178.
[ 7 ] 任守纲, 刘鑫, 顾兴健, 等. 基于R-BP神经网络的温室小气候多步滚动预测模型[J]. 中国农业气象, 2018, 39(5): 314-324.
Ren Shougang, Liu Xin, Gu Xingjian, et al. Multi‑Step rolling prediction model of greenhouse microclimate based on R-BP neural network [J]. Chinese Journal of Agrometeorology, 2018, 39(5): 314-324.
[ 8 ] Rasheed A, Kwak C S, Na W H, et al. Development of a building energy simulation model for control of multi‑span greenhouse microclimate [J]. Agronomy, 2020, 10(9): 1236.
[ 9 ] 尹庆珍, 张天策, 郄丽娟, 等. 基于广义回归神经网络异质复合墙体日光温室温度场的预测[J]. 中国农业大学学报, 2019, 24(6): 137-146.
Yin Qingzhen, Zhang Tiance, Qie Lijuan, et al. Temperature field prediction and application of heterogeneous composite wall in solar greenhouse based on general regression neural network [J]. Journal of China Agricultural University, 2019, 24(6): 137-146.
[10] 柴伟家. 基于神经网络的温室温湿度预测与控制[D]. 泰安: 山东农业大学, 2021.
Chai Weijia. Prediction and control of temperature and humidity in greenhouse based on neural network [D]. Tai'an:Shandong Agricultural University, 2021.
[11] Jung D H, Kim H S, Jhin C, et al. Time‑serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse [J]. Computers and Electronics in Agriculture, 2020, 173: 105402.
[12] 程陈, 冯利平, 董朝阳, 等. 利用Elman神经网络的华北棚型日光温室室内环境要素模拟[J]. 农业工程学报, 2021, 37(13): 200-208.
Cheng Chen, Feng Liping, Dong Chaoyang, et al. Simulation of inside environmental factors in solar greenhouses using Elman neural network in North China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(13): 200-208.
[13] 许童羽, 王泷, 张晓博, 等. RBF神经网络在北方日光温室湿度模拟预测中的应用[J]. 沈阳农业大学学报, 2014, 45(6): 726-730. Xu Tongyu, Wang Long, Zhang Xiaobo, et al. Application of RBF neural network in humidity simulation and prediction of northern sunlight greenhouse [J]. Journal of Shenyang Agricultural University, 2014, 45(6): 726-730.