[1] 韩树丰, 何勇, 方慧. 农机自动导航及无人驾驶车辆的发展综述(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 381-391, 515.
Han Shufeng, He Yong, Fang Hui. Recent development in automatic guidance and autonomous vehicle for agriculture: A review [J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2018, 44(4): 381-391, 515.
[2] 罗锡文, 张智刚, 赵祚喜, 等. 东方红X-804拖拉机的DGPS自动导航控制系统[J]. 农业工程学报, 2009, 25(11): 139-145.
Luo Xiwen, Zhang Zhigang, Zhao Zuoxi, et al. Design of DGPS navigation control system for Dongfanghong X-804 tractor [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(11): 139-145.
[3] 黎永键, 赵祚喜, 黄培奎, 等. 基于DGPS与双闭环控制的拖拉机自动导航系统[J]. 农业机械学报, 2017, 48(2): 11-19.
Li Yongjian, Zhao Zuoxi, Huang Peikui, et al. Automatic navigation system of tractor based on DGPS and double closedloop steering control [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 11-19.
[4] 王诗冬. 基于北斗卫星导航的拖拉机辅助驾驶系统研究[D]. 镇江: 江苏大学, 2017.
[5] 张京, 陈度, 王书茂, 等. 农机INS/GNSS组合导航系统航向信息融合方法[J]. 农业机械学报, 2015, 46(S1): 1-7.
Zhang Jing, Chen Du, Wang Shumao, et al. Research of INS/GNSS heading information fusion method for agricultural machinery automatic navigation system [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(S1): 1-7.
[6] 刘进一. 基于速度自适应的拖拉机自动导航控制系统研究[D]. 北京: 中国农业大学, 2017.
[7] 张硕, 刘进一, 杜岳峰, 等. 基于速度自适应的拖拉机自动导航控制方法[J]. 农业工程学报, 2017, 33(23): 48-55.
Zhang Shuo, Liu Jinyi, Du Yuefeng, et al. Method on automatic navigation control of tractor based on speed adaptation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 48-55.
[8] 刘军, 袁俊, 蔡骏宇, 等. 基于GPS/INS和线控转向的农业机械自动驾驶系统[J]. 农业工程学报, 2016, 32(1): 46-53.
Liu Jun, Yuan Jun, Cai Junyu, et al. Autopilot system of agricultural vehicles based on GPS/INS and steerbywire [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 46-53.
[9] 刘沛, 陈军, 张明颖. 基于激光导航的果园拖拉机自动控制系统[J]. 农业工程学报, 2011, 27(3): 196-199.
Liu Pei, Chen Jun, Zhang Mingying. Automatic control system of orchard tractor based on laser navigation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3): 196-199.
[10] 孟庆宽. 基于机器视觉的农业车辆—农具组合导航系统路径巧别及控制方法研究[D]. 北京: 中国农业大学, 2014.
[11] 翟志强. 基于虚拟现实的拖拉机双目视觉导航试验方法研究[D]. 北京: 中国农业大学, 2017.
[12] Du Y, Schiller B, Krantz D, et al. ALX: Autonomous vehicle guidance for roadway following and obstacle avoidance [C]. IEEE International Conference on Systems, 1995.
[13] Blackmore B S, Griepentrog H W, Nielsen H, et al. Development of a deterministic autonomous tractor [C]. CIGR International Conference, 2004.
[14] Kayacan E, Kayacan E, Ramon H, et al. Learning in centralized nonlinear model predictive control: Application to an autonomous tractortrailer system [J]. IEEE Transactions on Control Systems Technology, 2014, 23(1): 197-205.
[15] Thanpattranon P, Ahamed T, Takigawa T. Navigation of autonomous tractor for orchards and plantations using a laser range finder: Automatic control of trailer position with tractor [J]. Biosystems Engineering, 2016, 147: 90-103.
[16] 陈子义. 挪草机器人电液伺服控制及作物定位信息优化方法研究[D]. 北京: 中国农业大学, 2016.
[17] Lee C J, Jeon C W, Han Xiongzhe, et al. Electrohydraulic steering control system for automated steering of an agricultural tractor [J]. An ASABE Meeting Presentation, 2017.
[18] Chang Joo Lee. Application of electrohydraulic proportional valve for steering improvement of an autonomous tractor [D]. Seoul: Seoul National University, 2017.
[19] 房素素, 鲁植雄, 王增才, 等. 拖拉机线控液压转向系统设计及样车性能试验[J]. 农业工程学报, 2017, 33(10): 86-93.
Fang Susu, Lu Zhixiong, Wang Zengcai, et al. Design and prototype performance experiments of steeringbywire hydraulic pressure system of tractor [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 86-93.
[20] Wu D, Zhang Q, Reid J F, et al. Adaptive control of electrohydraulic steering system for wheeltype agricultural tractors [J]. An ASAE Meeting Presentation, Toronto, 1999.
[21] Hu Shupeng, Fu Weiqiang, Li You, et al. Research on automatic steering control system of full hydraulic steering tractor [C]. International Conference on Computer and Computing Technologies in Agriculture. Springer, Cham, 2017.
[22] 王庆. 拖拉机电控液压动力转向系统的转向机构及液压系统设计[D]. 南京: 南京农业大学, 2010.
[23] 耿国庆. 大客车新型电控液压转向系统控制方法与关键技术研究[D]. 镇江: 江苏大学, 2014.
[24] 徐广飞, 逄焕晓, 陈美舟, 等. 拖拉机电液耦合转向试验平台设计与硬件在环试验[J]. 农业机械学报, 2020, 51(S1): 525-534, 549.
Xu Guangfei, Pang Huanxiao, Chen Meizhou, et al. Design of hardware in loop tractor electrohydraulic coupling steering test platform [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 525-534, 549.
[25] 陈志刚. 电动液压转向助力系统仿真试验平台研究[D]. 长沙: 湖南大学, 2013.
[26] 禤文伟. 大中型商用车蓄能式电动液压助力转向系统开发[D]. 北京: 清华大学, 2015.
[27] Han Yaning, Zheng Hongyu, Wan Ying, et al. Assistance characteristics and control strategy of electrohydraulic power steering systems on commercial vehicles [J]. SAE Technical Paper 2015-01-2723, 2015.
[28] 吕程盛. 商用车电液耦合转向系统控制策略研究[D]. 吉林: 吉林大学, 2017.
[29] Zhou Xiaochuan, Zhao Wanzhong, Wang Chunyan. Performance analysis and multiobjective optimization design of vehicle electrohydraulic compound steering system [J]. DEStech Transactions on Environment Energy and Earth Science, 2019.
[30] Zhao Wanzhong, Zhou Xiaochuan, Wang Chunyan, et al. Energy analysis and optimization design of vehicle electrohydraulic compound steering system [J]. Applied Energy, 2019, 255: 1-17.
[31] Kralev J, Mitov A, Slavov T, et al. Optimal threeloop cascade PIPPI controller for electrohydraulic power steering system [J]. IOP Conference Series Materials Science and Engineering, 2019, 664: 012011.
[32] Wang Yunchao, Wang Chengzhi. Matching and optimising analysis of multiaxle steering vehicle steering system [J]. International Journal of Vehicle Design, 2018, 76: 82-107.
[33] Muro T. Trafficability control system for a tractor traveling up and down a weak slope terrain using initial track belt tension [J]. Soils and foundations, 1995, 35(1): 55-64.
[34] Nishiike Y, Umeda M, Fujii M. Braking force distribution control for an agricultural tractor [C]. Collection of Extent Abstracts of 2004 CIGR International Conference (Volume. 2). 2004.
[35] 董金松. 半挂汽车列车弯道制动行驶方向稳定性及协调控制策略研究[D]. 吉林: 吉林大学, 2010.
[36] Zong Changfu, Zhu Tianjun, Wang Chang, et al. Multiobjective stability control algorithm of heavy tractor semi-trailer based on differential braking [J]. Chinese Journal of Mechanical Engineering, 2012, 25(1): 88-97.
[37] Goodarzi A, Behmadi M, Esmailzadeh E. Optimized braking force distribution during a brakinginturn maneuver for articulated vehicles [C]. 2010 International Conference on Mechanical and Electrical Technology. IEEE, 2010: 555-559.
[38] Henderson L, Cebon D. Fullscale testing of a novel slip control braking system for heavy vehicles [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230(9): 1221-1238.
[39] Zhu B, Feng Y, Zhao J. Modelbased pneumatic braking force control for the emergency braking system of tractorsemitrailer [R]. SAE Technical Paper, 2018.
[40] Zheng H, Hu J, Ma S. Research on simulation and control of differential braking stability of tractor semitrailer [R]. SAE Technical Paper, 2015.
[41] Zheng H, Liu C, Wang L. A braking force distribution strategy in integrated braking system based on wear control and hitch force control [R]. SAE Technical Paper, 2018.
[42] Samorodov V, Kozhushko A, Pelipenko E. Influence of change of hydraulic machine control parameter during braking of the tractor with the continuously variable transmission [J]. Technology audit and production reserves, 2017, 41(36): 11-18.
[43] Yao Nianmeng, Lu Yufeng, Zhu Teng, et al. A study on regenerative braking of tractorsemitrailer combination based on AMESim [J]. Automotive Engineering, 2017, 39(5): 530-534.
[44] Jardine P T. A reinforcement learning approach to predictive control design: autonomous vehicle applications [D]. Queens University (Canada), 2018.
[45] 秦政. 基于自主和自学习行为智能体的AUV运动规划研究[D]. 吉林: 哈尔滨工程大学, 2008.
[46] 江浩斌, 施凯津, 华一丁, 等. 基于hp自适应伪谱法的智能汽车紧急变道轨迹规划与优化[J]. 中国公路学报, 2019, 32(6): 71-78.
Jiang Haobin, Shi Kaijin, Hua Yiding, et al. Lanechanging trajectory planning and optimization for intelligent vehicle through hpadaptive pseudospectral method [J]. China Journal of Highway and Transport, 2019, 32(6): 71-78.
[47] Bhopale P, Kazi F, Singh N. Reinforcement learning based obstacle avoidance for autonomous underwater vehicle [J]. Journal of Marine Science and Application, 2019, 18(2): 228-238.
[48] Wang P, Chan C Y, de La Fortelle A. A reinforcement learning based approach for automated lane change maneuvers [C]. 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018: 1379-1384.
[49] Ji X, He X, Lü C, et al. A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation [J]. Vehicle System Dynamics, 2018, 56(6): 923-946.
[50] Lü C, Xing Y, Lu C, et al. Hybridlearningbased classification and quantitative inference of driver braking intensity of an electrified vehicle [J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5718-5729.
[51] He X, Ji X, Yang K, et al. Autonomous emergency braking based on radial basis function neural network variable structure control for collision avoidance [C]. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, 2017: 378-383.
[52] Ji X, He X, Lü C, et al. Adaptiveneuralnetworkbased robust lateral motion control for autonomous vehicle at driving limits [J]. Control Engineering Practice, 2018, 76: 41-53.
[53] Bhattacharyya R P, Phillips D J, Wulfe B, et al. Multiagent imitation learning for driving simulation [C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1534-1539.
[54] Chen Y. Learningbased lane following and changing behaviors for autonomous vehicle [D]. Masterst thesis, Carnegie Mellon University, Pittsburgh, PA, 2018.
[55] Altché F, de La Fortelle A. An LSTM network for highway trajectory prediction [C]. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2017: 353-359.
[56] 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42.
Ji Xuewu, Fei Cong, He Xiangkun, et al. Intention recognition and trajectory prediction for vehicles using LSTM network [J]. China Journal of Highway and Transport, 2019, 32(6): 34-42.
[57] Buechel M, Knoll A. Deep reinforcement learning for predictive longitudinal control of automated vehicles [C]. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018: 2391-2397.
[58] 韩向敏, 鲍泓, 梁军, 等. 一种基于深度强化学习的自适应巡航控制算法[J]. 计算机工程, 2018, 44(7): 32-35, 41.
Han Xiangmin, Bao Hong, Liang Jun, et al. An adaptive cruise control algorithm based on deep reinforcement learning [J]. Computer Engineering, 2018, 44(7): 32-35, 41.
[59] Yu L, Shao X, Wei Y, et al. Intelligent landvehicle model transfer trajectory planning method based on deep reinforcement learning [J]. Sensors, 2018, 18(9): 2905.
[60] Yu A, PalefskySmith R, Bedi R. Deep reinforcement learning for simulated autonomous vehicle control [J]. Course Project Reports: Winter, 2016.
|