Journal of Chinese Agricultural Mechanization ›› 2021, Vol. 42 ›› Issue (12): 228-236.DOI: 10.13733/j.jcam.issn.20955553.2021.12.33
Zhong Juxin, Tang Hongqin, He Tieguang, Li Zhongyi, Li Qiang.
Online:
2021-12-15
Published:
2021-12-15
钟菊新1, 2, 3,唐红琴3,何铁光3,李忠义3,李强1, 2
基金资助:
CLC Number:
Zhong Juxin, Tang Hongqin, He Tieguang, Li Zhongyi, Li Qiang.. Research progress of soil bacteria based on bibliometrics[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 228-236.
钟菊新, 唐红琴, 何铁光, 李忠义, 李强, . 基于文献计量法的土壤细菌研究进展[J]. 中国农机化学报, 2021, 42(12): 228-236.
[1] 朱永官, 沈仁芳, 贺纪正, 等. 中国土壤微生物组: 进展与展望[J]. 中国农业文摘—农业工程, 2018, 30(3): 6-12, 38. Zhu Yongguan, Shen Renfang, He Jizheng, et al. China soil microbiomeinitiative: Progress and perspective [J]. Agricultural Abstracts of ChinaAgricultural Engineering, 2018, 30(3): 6-12, 38. [2] 孙迎韬. 我国森林土壤细菌群落地理分布及其驱动机制研究[D]. 北京: 中国科学院大学, 2020. Sun Yingtao. Study on the geographical distribution and driving mechanism of forest soil bacterial community in China[D]. Beijing: University of Chinese Academy of Sciences, 2020. [3] 褚海燕, 冯毛毛, 柳旭, 等. 土壤微生物生物地理学:国内进展与国际前沿[J]. 土壤学报, 2020, 57(3): 515-529. Chu Haiyan, Feng Maomao, Liu Xu, et al. Soil microbial biogeography: Recent advances in China and research frotiers in the word [J]. Acta Pedologica Sinica, 2020, 57(3): 515-529. [4] 贺纪正, 陆雅海, 傅伯杰, 等. 土壤微生物学前沿[M]. 北京: 科学出版社, 2015. [5] 郑勇, 贺纪正. 森林土壤微生物对干旱和氮沉降的响应[J]. 应用生态学报, 2020, 31(7): 2464-2472. Zheng Yong, He Jizheng. Responses of forest soil microbial communities to drought and nitrogen deposition: A review [J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2464-2472. [6] Kuypers Marcel M M, Marchant Hannah K, Kartal Boran. The microbial nitrogencycling network. [J]. Nature Reviews. Microbiology, 2018, 16 (5): 263-276. [7] Ayangbenro A S, Babalola O O, Charlesworth S. A new strategy for heavy metal polluted environments: A review of microbial biosorbents [J]. International Journal of Environmental Research and Public Health, 2017, 14 (1): 94. [8] 褚海燕, 刘满强, 韦中, 等.保持土壤生命力,保护土壤生物多样性[J].科学, 2020, 72(6): 38-42. [9] 宋长青, 吴金水, 陆雅海, 等. 中国土壤微生物学研究10年回顾[J]. 地球科学进展, 2013, 28(10): 1087-1105. Song Changqing, Wu Jinshui, Lu Yahai, et al. Advances of soil microbiology in the last decade in China [J]. Advances in Earth Science, 2013, 28(10): 1087-1105. [10] 曹天正, 韩冬梅, 宋献方, 等. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166. Cao Tianzheng, Han Dongmei, Song Xianfang, et al. Bibliometric analysis of research progress on coastal surface water and groundwater interaction [J]. Advances in Earth Science, 2020, 35(2): 154-166. [11] 刘中庆, 李梦莎, 杨立宾, 等. 基于Web of Science的土壤真菌发展研究[J]. 环境科学与技术, 2019, 42(S1): 57-64. Liu Zhongqing, Li Mengsha, Yang Libin, et al. Development and tendency of soil fungi based on Web of Science [J]. Environmental Science & Technology, 2019, 42(S1): 57-64. [12] 李强. 基于文献计量学分析2016年度岩溶学研究热点[J]. 地球科学进展, 2017, 32(5): 535-545. Li Qiang. Research hotspots of Karst in 2016 based on bibliometrics analysis [J]. Advances in Earth Science, 2017, 32(5): 535-545. [13] 李忠义, 韦彩会, 何铁光, 等. 基于学科知识图谱的紫云英研究态势分析[J]. 中国农机化学报, 2020, 41(7): 207-214. Li Zhongyi, Wei Caihui, He Tieguang, et al. Research status on Chinese milk vetch (Astragalus sinicus) based on the discipline knowledge map [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 207-214. [14] Chen C S M. Visualizing a field of research: A methodology of systematic scientometric reviews [J]. PLos One, 2019. [15] Van Eck N J W L, R. Rousseau D W E P. Measuring scholarly impact: Methods and practice [J]. Springer, 2014: 285-320. [16] 褚海燕, 马玉颖, 杨腾, 等. “十四五”土壤生物学分支学科发展战略[J]. 土壤学报, 2020, 57(3): 1105-1116. Chu Haiyan, Ma Yuying, Yang Teng, et al. The strategies for development of the subdiscipline of soil biology for the 14th fiveyear plan [J]. Acta Pedologica Sinica, 2020, 57(5): 1105-1116. [17] 刘双江, 施文元, 赵国屏. 中国微生物组计划:机遇与挑战[J]. 中国科学院院刊, 2017, 32(3): 241-250. Liu Shuangjiang, Shi Wenyuan, Zhao Guoping. China microbiome initiative: Opportunity and challenges [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(3): 241-250. [18] 褚海燕, 王艳芬, 时玉, 等. 土壤微生物生物地理学研究现状与发展态势[J]. 中国科学院院刊, 2017, 32(6): 585-592. Chu Haiyan, Wang Yanfen, Shi Yu, et al. Current status and development trend of soil microbial biogeography [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 585-592. [19] 高贵锋, 褚海燕. 微生物组学的技术和方法及其应用[J]. 植物生态学报, 2020, 44(4): 395-408. Gao Guofeng, Chu Haiyan. Techniques and methods of microbiomics and their applications [J]. Chinese Journal of Plant Ecology, 2020, 44(4): 395-408. [20] Petr B. The known and the unknown in soil microbial ecology [J]. FEMS Microbiology Ecology, 2019, 95(2): 1-9. [21] Rachel M, M G A, Regina L, et al. Microbial community structure and functional potential in cultivated and native tallgrass prairie soils of the Midwestern United States [J]. Frontiers in Microbiology. 2018, 9: 1775. [22] Knief C, Delmotte N L, Chaffron S, et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice [J]. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2012, 6(7): 1378-1390. [23] Dove C, Stark M, Newman S, et al. Carbon control on terrestrial ecosystem function across contrasting site productivities: The carbon connection revisited [J]. Ecology, 2019, 100(7). [24] Cheng L, Zhang N, Yuan M, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities [J]. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2017, 11(8): 1825-1835. [25] Chen X, Chen H Y H. Plant diversity loss reduces soil respiration across terrestrial ecosystems [J]. Global Change Biology, 2019, 25(4): 1482-1492. [26] Eacute A, Classen E T, Sundqvist M K, et al. Direct and indirect effects of climate change on soil microbial and soil microbialplant interactions: What lies ahead? [J]. Ecosphere, 2015, 6(8): 1-21. [27] Singh D, Takahashi K, Kim M, et al. A HumpBacked trend in bacterial diversity with elevation on Mount Fuji, Japan [J]. Microbial Ecology, 2012, 63 (2): 429-437. [28] 张丹丹, 张丽梅, 沈菊培, 等. 珠穆朗玛峰不同海拔梯度上土壤细菌和真菌群落变化特征[J]. 生态学报, 2018, 38(7): 2247-2261. Zhang Dandan, Zhang Limei, Shen Jupei, et al.Soil bacterial and fungal community succession along on altitude gradient on Mount Everest [J]. Acta Ecologica Sinica, 2018, 38(7): 2247-2261. [29] Shen C C, Liang W J, Shi Y, et al. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants [J]. Ecology, 2014, 95(11): 3190-3202. [30] Shen C C, Xiong J B, Zhang H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain [J]. Soil Biology and Biochemistry, 2013, 57: 204-221. [31] Cui Y, Bing H, Fang L, et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau [J]. Geoderma, 2019, 338: 118-127. [32] DelgadoBaquerizo M, Oliverio A M, Brewer T E, et al. A global atlas of the dominant bacteria found in soil [J]. Science, 2018, 359 (6373): 320-325. [33] DelgadoBaquerizo M, Eldridge D J. Crossbiome drivers of soil bacterial alpha diversity on a worldwide scale [J]. Ecosystems, 2019, 22(6): 1220-1231. [34] Shi Y, Li Y T, Yuan M Q, et al. A biogeographic map of soil bacterial communities in wheats field of the north China Plain [J]. Soil Ecology Letters, 2019, 1(1-2): 50-58. [35] E K J, R N D. Changes in community assembly may shift the relationship between biodiversity and ecosystem function [J]. Frontiers in Microbiology, 2014, 5: 424. [36] Vellend. Conceptual synthesis in community ecology [J]. Q REV BIOL, 2010, 85(2): 183-206. [37] Stegen J C, Lin X, Konopka A E, et al. Stochastic and deterministic assembly processes in subsurface microbial communities [J]. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2012, 6 (9): 1653-1664. [38] Maureen A. OMalley. The nineteenth century roots of ‘everything is everywhere’ [J]. Nature Reviews Microbiology, 2007, 5(8): 647-651. [39] Cho C J, Tiedje J M. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil [J]. Applied and Environmental Microbiology, 2000, 66(12): 5548-5456. [40] 贺纪正, 王军涛. 土壤微生物群落构建理论与时空演变特征[J]. 生态学报, 2015, 35(20): 6575-6583. He Jizheng, Wang Juntao. Mechanisms of community organization and spatiotemporal patterns of soil microbial communities [J]. Acta Ecologica Sinica, 2015, 35(20): 6575-6583. [41] Zhao P Y, Bao J B, Wang X, et al. Deterministic processes dominate soil microbial community assembly in subalpine coniferous forests on the Loess Plateau [J]. Peer J, 2019, 7: e6746. [42] Feng M M, Tripathi B M, Shi Y, et al. Interpreting distancedecay pattern of soil bacteria via quantifying the assembly processes at multiple spatial scales [J]. Microbiology Open, 2019, 8 (9): e00851. [43] Liu W J, Graham E B, Zhong L, et al. Dynamic microbial assembly processes correspond to soil fertility in sustainable paddy agroecosystems [J]. Functional Ecology, 2020, 34 (6): 1244-1256. [44] Xun W B, Li W, Xiong W, et al. Diversitytriggered deterministic bacterial assembly constrains community functions [J]. Nature Communications, 2019, 10 (1): 59-67. [45] Sanyal S K S J R F. Cycling of biogenic elements drives biogeochemical gold cycling [J]. EarthScience Reviews, 2019, 190: 131-147. [46] 李金业, 陈庆锋, 尹志超, 等. 湿地甲烷厌氧氧化机制研究进展[J]. 土壤学报, 2020, 57(6): 1353-1364. Li Jinye, Chen Qingfeng, Yin Zhichao, et al. A review of researches on Anaerobic Oxidation of Methane (AOM) in wetlands [J]. Acta Pedologica Sinica, 2020, 57(6): 1353-1364. [47] Dai Z M, Yu M J, Chen H H, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems [J]. Global Change Biology, 2020, 26(9): 5267-5276. [48] Li X, Huang Y, Liu H, et al. Simultaneous Fe (ⅲ) reduction and ammonia oxidation process in Anammox sludge [J]. Journal of Environmental Sciences, 2018, 64(2): 42-50. [49] Ramirez K S, Craine J M, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes [J]. Global Change Biology, 2012, 18(6): 1918-1927. [50] 曾军, 吴宇澄, 林先贵. 多环芳烃污染土壤微生物修复研究进展[J]. 微生物学报, 2020, 60(12): 2804-2815. Zeng Jun, Wu Yucheng, Lin Xiangui. Advances in microbial remediation of soils polluted by polycyclic aromatic hydrocarbons [J]. Acta Microbiologica Sinica, 2020, 60(12): 2804-2815. [51] Zeng J, Zhu Q H, Li Y J, et al. Isolation of diverse pyrenedegrading bacteria via introducing readily utilized phenanthrene [J]. Chemosphere, 2019, 222: 534-540. [52] Zhang Q M, Liu H Y, Muhammad S, et al. Biotransformation of chlorothalonil by strain Stenotrophomonas acidaminiphila BJ1 isolated from farmland soil [J]. Royal Society Open Science, 2019, 6(11): 190562. [53] Zhang C, Hao Q K, Zhang S H, et al. Transcriptomic analysis of Chlorimuronethyl degrading bacterial strain Klebsiella jilinsis 2N3 [J]. Ecotoxicology and Environmental Safety, 2019, 183. [54] Su C, Jiang L Q, Zhang W J. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques [J]. Environmental Skeptics and Critics, 2014, 3(2): 24-38. [55] 范聪, 肖炜, 张仕颖. 微生物修复污染土壤的应用研究进展[J]. 贵州农业科学, 2017, 45(8): 53-58. Fan Cong, Xiao Wei, Zhang Shiying. Advances in application of microorganisms in contaminated soils [J]. Guizhou Agricultural Sciences, 2017, 45(8): 53-58. [56] Wu G, Kang H B, Zhang X Y, et al. A critical review on the bioremoval of hazardous heavy metals from contaminated soils: Issues, progress, ecoenvironmental concerns and opportunities [J]. Journal of Hazardous Materials, 2010, 174 (1-3): 1-8. [57] Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects [J]. Arabian Journal of Chemistry, 2019, 12(7): 1365-1377. [58] Bilal S, Khan A L, Shahzad R, et al. Mechanisms of Cr (VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.) [J]. Ecotoxicology and Environmental Safety, 2018, 164(30): 648-658. [59] Schmidt R, Ulanova D, Wick L Y, et al. Microbedriven chemical ecology: Past, present and future [J]. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2019, 13(11): 2656-2663. Research progress of soil bacteria based on bibliometricsZhong Juxin1, 2, 3, Tang Hongqin3, He Tieguang3, Li Zhongyi3, Li Qiang1, 2 (1. Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China; 2. International Research Center on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin, 541004, China; 3. Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China) Abstract: Soil bacteria are the most widely distributed and largest microbial group, which plays an irreplaceable role in the soil environment. To better explore the hotspot of soil bacteria, 34 918 papers were collected from the Web of Science from 2010 to 2020 and were visualized by bibliometric analysis. The results show the following. The amount of research on soil bacteria showed a trend of gradual increase and did not reach saturation state, which had a broad development prospect. China has published the highest number of papers in the soil bacteria field, accounting for 27.09% of the global total, with 9 458 papers. Among the top 10 scientific research institutions and scholars, China occupies 6th and 4th places, respectively. In recent years, the focus and hotspot of research is the production and maintenance mechanism of soil bacterial diversity and the function of soil bacteria, including the spatial distribution of bacteria and the response to the environment, community assembly, biogeochemical cycling, microbial remediation, and the health of plants and soil. Although soil bacteria research has strong application prospects, it still faces significant challenges. Therefore, we must break through the existing technical means to link the characteristics of soil bacteria to ecosystem functions and promote its development. Keywords: soil bacteria; bibliometric analysis; visual analysis; research hotspots (上接第213页) [30] 付华, 李萍. 农业机械化发展对粮食生产的影响——基于机械异质性和区域异质性的分析[J]. 财经科学, 2020(12): 40-55. Fu Hua, Li Ping. Influence of agricultural mechanization development on grain production since the new century: An analysis based on regional heterogeneity [J]. Finance & Economics, 2020(12): 40-55. [31] 王芳, 曾令秋. 农业全要素生产率与农业优先发展[J]. 财经科学, 2021(2): 121-132. Wang Fang, Zeng Lingqiu. Agricultural total factor productivity and preferential development of agriculture [J]. Finance & Economics, 2021(02): 121-132. [32] 李忠旭, 庄健. 健康冲击降低了粮农收入吗?——基于农业机械化引入视角[J]. 中国农机化学报, 2021, 42(4): 197-204. |
[1] | Li Zhixuan, Xiang Yun, Lu Qian.. Research progress, hotspots and prospects in the field of highquality development of agricultural economy: Visual analysis based on CiteSpace [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 106-115. |
[2] | Liu Qin, Cao Guangqiao, Si Minghao, Wang Yina, Li Liang.. Deconstruction of innovation power of Jiangsu agricultural machinery manufacturing enterprises [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 211-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296