[ 1 ] 杨肖委. 自动驾驶场景的双目深度估计研究[D]. 贵阳: 贵州大学, 2022.
[ 2 ] 徐广飞, 陈美舟, 金诚谦, 等. 拖拉机自动驾驶关键技术综述[J]. 中国农机化学报, 2022, 43(6): 126-134.
Xu Guangfei, Chen Meizhou, Jin Chengqian, et al. A review of key technology of tractor automatic driving [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 126-134.
[ 3 ] 林中豪, 高晓阳, 邵世禄, 等. 葡萄园田间机器人双目测距系统设计[J]. 中国农机化学报, 2019, 40(4): 179-183.
Lin Zhonghao, Gao Xiaoyang, Shao Shilu, et al. Design of the binocular ranging system in vineyard robot [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 179-183.
[ 4 ] 张振乾, 李世超, 李晨阳, 等.基于双目视觉的香蕉园巡检机器人导航路径提取方法[J]. 农业工程学报, 2021, 37(21): 9-15.
Zhang Zhenqian, Li Shichao, Li Chenyang, et al. Navigation path detection method for a banana orchard inspection robot based on binocular vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21): 9-15.
[ 5 ] 缪亚伦. 基于深度学习及双目视觉的百香果检测与定位技术研究[D]. 南宁: 广西大学, 2023.
[ 6 ] 生明超. 基于双目视觉的螺旋式粮面机器人平粮作业测距与目标识别定位研究[D]. 长春: 吉林农业大学, 2023.
[ 7 ] 严鑫. 基于双目视觉的温室采摘机器人目标识别[D]. 天津: 天津农学院, 2023.
[ 8 ] 魏建胜, 潘树国, 田光兆, 等. 农业车辆双目视觉障碍物感知系统设计与试验[J]. 农业工程学报, 2021, 37(9): 55-63.
[ 9 ] 闫成功, 徐丽明, 袁全春, 等. 基于双目视觉的葡萄园变量喷雾控制系统设计与试验[J]. 农业工程学报, 2021, 37(11): 13-22.
[10] Mayer N, Ilg E, Hausser P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4040-4048.
[11] Menze M, Geiger A. Object scene flow for autonomous vehicles [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3061-3070.
[12] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two‑frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002, 47(1): 7-42.
[13] Yang G, Zhao H, Shi J, Deng Z, et al. Segstereo: Exploiting semantic information for disparity estimation [C]. Proceedings of the European Conference on Computer Vision, 2018: 636-651.
[14] Song X, Zhao X, Fang L, et al. Edgestereo: An effective multi‑task learning network for stereo matching and edge detection [J]. International Journal of Computer Vision, 2020, 128(4): 910-930.
[15] 刘建国, 冯云剑, 纪郭, 等. 一种基于PSMNet改进的立体匹配算法[J]. 华南理工大学学报(自然科学版), 2020, 48(1): 60-69, 83.
[16] Pang J, Sun W, Ren J S, et al. Cascade residual learning: A two‑stage convolutional neural network for stereo matching [C]. Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017: 887-895.
[17] Xu H, Zhang J. Aanet: Adaptive aggregation network for efficient stereo matching [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1959-1968.
[18] Wu Z, Wu X, Zhang X, et al. Semantic stereo matching with pyramid cost volumes [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 7484-7493.
[19] Kendall A, Martirosyan H, Dasgupta S, et al. End‑to‑end learning of geometry and context for deep stereo regression [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 66-75.
[20] 陈舒雅. 基于深度学习的立体匹配技术研究[D]. 杭州: 浙江大学, 2022.
[21] Bao W, Wang W, Xu Y, et al. InStereo2K: A large real dataset for stereo matching in indoor scenes [J]. Science China Information Sciences, 2020, 63(11): 1-11.
[22] Gu X, Fan Z, Zhu S, et al. Cascade cost volume for high‑resolution multi‑view stereo and stereo matching [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2495-2504.
|