[1] 朱慧敏. 硒添食对家蚕生长发育及硒蛋白相关基因表达的影响[D]. 镇江: 江苏科技大学, 2022.
Zhu Huimin. Effects of selenium supplementation on growth and development of silkworm and expression of selenoprotein-related genes [D]. Zhenjiang: Jiangsu University of Science and Technology, 2022.
[2] 张雨丽, 李豪, 樊银凤, 等. 全龄人工饲料育与桑叶育家蚕生丝的蛋白质成分比较[J]. 蚕业科学, 2022, 48(3): 228-236.
Zhang Yuli, Li Hao, Fan Yinfeng, et al. Comparative analysis of protein composition of raw silk from silkworm reared on artificial diet and mulberry leaf in all instars [J]. Acta Sericologica Sinica, 2022, 48(3): 228-236.
[3] 蔡幼民. 家蚕人工饲料育研究工作回顾[J]. 蚕业科学, 2022, 48(1): 1-6.
Cai Youmin. A review of our research on artificial diet rearing of silkworm [J]. Acta Sericologica Sinica, 2022, 48(1): 1-6.
[4] 逄玉军, 马彦辉, 程国辉, 等. 辽宁省柞蚕留根单母的时代演进和生产要点[J]. 蚕桑茶叶通讯, 2020(1): 7-8.
[5] 孙亮, 柯宇航, 刘辉, 等.计算机视觉技术在植物病害识别上的研究进展[J]. 热带生物学报, 2022, 13(6): 651-658.
Sun Liang, Ke Yuhang, Liu Hui, et al. Advances in recognition of plant diseases based on computer vision [J]. Journal of Tropical Biology, 2022, 13(6): 651-658.
[6] 任治洲, 谢云, 晁志恒, 等. 基于物联网与深度学习技术的农作物生长状况远程动态监测系统[J]. 物联网技术, 2022, 12(8): 15-18, 21.
[7] 杨涛, 李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报, 2021, 42(3): 171-181.
Yang Tao, Li Xiaoxiao. Research progress of machine vision technology in modern agricultural production [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 171-181.
[8] 何雨霜, 王琢, 王湘平, 等. 深度学习在农作物病害图像识别中的研究进展[J]. 中国农机化学报, 2023, 44(2): 148-155.
He Yushuang, Wang Zhuo, Wang Xiangping, et al. Research progress of deep learning in crop disease image recognition [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 148-155.
[9] 石洪康, 田涯涯, 杨创, 等. 基于卷积神经网络的家蚕幼虫品种智能识别研究[J]. 西南大学学报(自然科学版), 2020, 42(12): 34-45.
Shi Hongkang, Tian Yaya, Yang Chuang, et al. Research on intelligent recognition of silkworm larvae races based on convolutional neural networks [J]. Journal of Southwest University (Natural Science Edition), 2020, 42(12): 34-45.
[10] 石洪康, 肖文福, 黄亮, 等. 基于卷积神经网络的家蚕病害识别研究[J]. 中国农机化学报, 2022, 43(1): 150-157.
Shi Hongkang, Xiao Wenfu, Huang Liang, et al. Research on recognition of silkworm diseases based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(1): 150-157.
[11] 于业达, 高鹏飞, 赵一舟, 等. 基于深度卷积神经网络的蚕蛹雌雄自动识别[J]. 蚕业科学, 2020, 46(2): 197-203.
Yu Yeda, Gao Pengfei, Zhao Yizhou, et al. Automatic identification of female and male silkworm pupa based on deep convolution neural network [J]. Acta Sericologica Sinica, 2020, 46(2): 197-203.
[12] 陶丹. 基于机器视觉的家蚕蛹雌雄识别研究[D]. 重庆: 西南大学, 2019.
Tao Dan. Sex discrimination study of silkworm pupae based on machine vision technology [D]. Chongqing: Southwest University, 2019.
[13] 何锐敏, 郑可锋, 尉钦洋, 等. 基于改进Mask R-CNN模型的工厂化养蚕蚕体识别与计数[J]. 智慧农业(中英文), 2022, 4(2): 163-173.
He Ruimin, Zheng Kefeng, Wei Qinyang, et al. Identification and counting of silkworms in factory farm using improved mask R-CNN model [J]. Smart Agriculture, 2022, 4(2): 163-173.
[14] Wen C, Wen J, Li J, et al. Lightweight silkworm recognition based on multi-scale feature fusion [J]. Computers and Electronics in Agriculture, 2022, 200: 107234.
[15] 李时杰, 孙卫红, 梁曼, 等. 基于深度学习的蚕茧种类实时检测系统设计[J]. 上海纺织科技, 2021, 49(11): 53-55, 58.
Li Shijie, Sun Weihong, Liang Man, et al. Design of real-time detection system for silkworm cocoon species based on deep learning [J]. Shanghai Textile Science & Technology, 2021, 49(11): 53-55, 58.
[16] 张友洪, 沈以红, 肖文福, 等. 家蚕杂交组合芳·绣 × 白·春的选配[J]. 蚕业科学, 2014, 40(6): 1017-1023.
Zhang Youhong, Shen Yihong, Xiao Wenfu, et al. Selective breeding of Bombyx mori cross combination Fang· Xiu × Bai· Chun [J]. Acta Sericologica Sinica, 2014, 40(6): 1017-1023.
[17] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[18] Li S, Wang Z, Liu Z, et al. Efficient multi-order gated aggregation network [J]. arXiv preprint arXiv: 2211.03295, 2022.
[19] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[20] Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint arXiv: 1704.04861, 2017.
[21] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[22] Huang G, Liu Z, Van DerMaaten L, et al. Densely connected convolutional networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
(上接第226页)
Wu Xiru, Xue Qiwei. 3D vehicle detection for unmanned driving system based on lidar [J]. Optics and Precision Engineering, 2022, 30(4): 489-497.
[13] 尚业华, 张光强, 孟志军, 等. 基于欧氏聚类的三维激光点云田间障碍物检测方法[J]. 农业机械学报, 2022, 53(1): 23-32.
Shang Yehua, Zhang Guangqiang, Meng Zhijun, et al. Field obstacle detection method of 3D Lidar point cloud based on euclidean clustering [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 23-32.
[14] Yan Z, Duckett T, Bellotto N. Online learning for 3D LiDAR-based human detection: Experimental analysis of point cloud clustering and classification methods [J]. Autonomous Robots, 2020, 44: 147-164.
[15] 刘亮. 基于激光雷达的结构化道路环境感知及避障路径规划方法研究[D]. 西安: 长安大学, 2021.
Liu Liang. Research on environmental awareness and path planning of structured road based on Lidar [D]. Xian: Changan University, 2021.
[16] 刘浩然, 范伟伟, 徐永胜, 等. 基于无人机激光雷达点云数据的单木分割研究[J]. 中南林业科技大学学报, 2022, 42(1): 45-53.
Liu Haoran, Fan Weiwei, Xu Yongsheng, et al. Research on single tree segmentation based on UAV LiDAR point cloud data [J]. Journal of Central South University of Forestry & Technology, 2022, 42(1): 45-53.
[17] 赵星阳. 基于车载激光雷达的路面分割与障碍物检测关键技术研究[D]. 合肥: 合肥工业大学, 2021.
Zhao Xingyang. Research on road segmentation and obstacle detection of autonomous vehicle based on Lidar [D].Hefei: Hefei University of Technology, 2021.
[18] Tian Y, Song W, Chen L, et al. A fast spatial clustering method for sparse LiDAR point clouds using GPU programming [J]. Sensors, 2020, 20(8): 2309.
[19] Mohd Romlay M R, Mohd Ibrahim A, Toha S F, et al. Novel CE-CBCE feature extraction method for object classification using a low-density LiDAR point cloud [J]. PloS one, 2021, 16(8): e0256665.
[20] Nguyen H T, Lee E H, Bae C H, et al. Multiple object detection based on clustering and deep learning methods [J]. Sensors, 2020, 20(16): 4424.
[21] Gamal A, Wibisono A, Wicaksono S B, et al. Automatic LiDAR building segmentation based on DGCNN and euclidean clustering [J]. Journal of Big Data, 2020, 7(1): 1-18.
[22] Gao F, Li C, Zhang B. A dynamic clustering algorithm for LiDAR obstacle detection of autonomous driving system [J]. IEEE Sensors Journal, 2021, 21(22): 25922-25930.
[23] 张博闻. 面向开放场景的自动驾驶激光雷达目标检测技术研究[D]. 重庆: 重庆大学, 2020.
Zhang Bowen. Research on automatic lidar target detection technology for open scene [D]. Chongqing: Chongqing University, 2020.
|