[1] 高思涵, 吴海涛. 典型家庭农场组织化程度对生产效率的影响分析[J].农业经济问题, 2021(3): 88-99.
Gao Sihan, Wu Haitao. Analysis on the influence of organizational degree to production efficiency in typical family farm [J]. Issues in Agricultural Economy, 2021(3): 88-99.
[2] 闵锐, 李谷成. 环境约束条件下的中国粮食全要素生产率增长与分解——基于省域面板数据与序列MalmquistLuenberger指数的观察[J]. 经济评论, 2012(5): 34-42.
Min Rui, Li Gucheng. A study on growth and decomposition of Chinas grain TFP growth under environmental constrains: Empirical analysis based on provincial panel data and sequential MalmquistLuenberger index [J]. Economic Review, 2012(5): 34-42.
[3] 钟甫宁, 陆五一, 徐志刚. 农村劳动力外出务工不利于粮食生产吗?——对农户要素替代与种植结构调整行为及约束条件的解析[J]. 中国农村经济, 2016(7): 36-47.
[4] 周娟. 基于生产力分化的农村社会阶层重塑及其影响——农业社会化服务的视角[J]. 中国农村观察, 2017(5): 61-73.
Zhou Juan. The reconstruction of rural social stratum based on productivity differentiation and its influence: From the perspective of agricultural socialized services [J]. China Rural Survey, 2017(5): 61-73.
[5] Park G A, McDonald G A, Devkota M, et al. Increasing yield stability and input efficiencies with costeffective mechanization in Nepal [J]. Field Crops Research, 2018(228): 93-101.
[6] 杨宇, 李容, 吴明凤. 土地细碎化对农户购买农机作业服务的约束路径分析[J]. 农业技术经济, 2018(10): 17-25.
Yang Yu, Li Rong, Wu Mingfeng. The constraints of land fragmentation on farmers agricultural machinery services purchase [J]. Journal of Agrotechnical Economics, 2018(10): 17-25.
[7] 胡祎, 张正河. 农机服务对小麦生产技术效率有影响吗?[J]. 中国农村经济, 2018(5): 68-83.
Hu Yi, Zhang Zhenghe. The impact of agricultural machinery service on technical efficiency wheat production [J]. Chinese Rural Economy, 2018(5): 68-83.
[8] 王颜齐, 郭翔宇. 种植户农业雇佣生产行为选择及其影响效应分析——基于黑龙江和内蒙古大豆种植户的面板数据[J]. 中国农村经济, 2018(4): 106-120.
Wang Yanqi, Guo Xianyu. The behavior of agricultural production with wage labor and its efficiency: An analysis based on panel data on soybean growers in Heilongjiang and Inner Mongolia [J]. Chinese Rural Economy, 2018(4): 106-120.
[9] 杨万江, 李琪. 新型经营主体生产性服务对水稻生产技术效率的影响研究——基于12省1926户农户调研数据[J]. 华中农业大学学报(社会科学版), 2017(5): 12-19, 144.
Yang Wanjiang, Li Qi. Study on effect of new agricultural management entities productive service on rice production technical efficiencybased on household survey data of 1965 farmers in 12 provinces [J]. Journal of Huazhong Agricultural University(Social Sciences Edition), 2017(5): 12-19, 144.
[10] 王正丹. 农业机械化水平对农村劳动力转移的影响研究——基于中国31个省的面板数据[D]. 成都: 西南财经大学, 2019.
Wang Zhengdan. Research on the Impact of agricultural mechanization level on the transfer of rural labour—Based on panel data from 31 Chinese provinces [D]. Chengdu: Southwestern University of Finance and Economics, 2019.
[11] 郑晶, 高孟菲. 农业机械化、农村劳动力转移对农业全要素生产率的影响研究——基于中国大陆31个省(市、自治区)面板数据的实证检验[J]. 福建论坛(人文社会科学版), 2021(8): 59-71.
[12] 罗必良. 论服务规模经营——从纵向分工到横向分工及连片专业化[J]. 中国农村经济, 2017(11): 2-16.
Luo Biliang. Service scale management: vertical division of labor, horizontal division of labor and specialization of connected farmland [J]. Chinese Rural Economy, 2017(11): 2-16.
[13] 张宗毅, 杜志雄. 农业生产性服务决策的经济分析——以农机作业服务为例[J]. 财贸经济, 2018, 39(4): 146-160.
Zhang Zongyi, Du Zhixiong.Economic analysis of farmers decisionmaking on agricultural production services—Taking agricultural machinery operation service as example [J]. Finance & Trade Economics, 2018, 39(4): 146-160.
[14] 陈涛, 陈池波. 人口外流背景下县域城镇化与农村人口空心化耦合评价研究[J]. 农业经济问题, 2017, 38(4): 58-66, 111.
Chen Tao, Chen Chibo. Analysis on coupling between county level urbanization and rural population hollowing under the background of escaping migration [J]. Issues in Agricultural Economy, 2017, 38(4): 58-66, 111.
[15] 王欧, 唐轲, 郑华懋. 农业机械对劳动力替代强度和粮食产出的影响[J]. 中国农村经济, 2016(12): 46-59.
[16] 罗明忠, 邱海兰. 农机社会化服务采纳、禀赋差异与农村经济相对贫困缓解[J]. 南方经济, 2021(2): 1-18.
Luo Mingzhong, Qiu Hailan. Agricultural machinery socialization service adoption, endowment difference and alleviation of rural economic relative poverty [J]. South China Journal of Economics, 2021(2): 1-18.
[17] 徐春光. 又到跨区机收时——诸城“麦客”备战跨区作业面面观[J]. 当代农机, 2014(5): 9-11.
[18] 孔令成, 郑少锋. 家庭农场的经营效率及适度规模——基于松江模式的DEA模型分析[J]. 西北农林科技大学学报(社会科学版), 2016, 16(5): 107-118.
Kong Lingcheng, Zheng Shaofeng. Research on operating efficiency and moderate scale of family farm—Based on DEA models analysis of Songjiang model [J]. Journal of Northwest A & F University(Social Science Edition), 2016, 16(5): 107-118.
[19] 张扬. 试论我国新型农业经营主体形成的条件与路径——基于农业要素集聚的视角分析[J]. 当代经济科学, 2014, 36(3): 112-117, 128.
Zhang Yang. The conditions and paths for forming a new subject of Chinese agricultural operation [J]. Modern Economic Science, 2014, 36(3): 112-117, 128.
[20] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units [J]. European Journal of Operational Research, 1978, 2(6): 429-444.
[21] 李谷成, 李烨阳, 周晓时. 农业机械化、劳动力转移与农民收入增长——孰因孰果?[J].中国农村经济, 2018(11): 112-127.
Li Gucheng, Li Yeyang, Zhou Xiaoshi. Agricultural mechanization, labor transfer and the growth of farmers income: A reexamination of causality [J]. Chinese Rural Economy, 2018(11): 112-127.
[22] 宦梅丽, 侯云先. 农机服务、农村劳动力结构变化与中国粮食生产技术效率[J]. 华中农业大学学报(社会科学版), 2021(1): 69-80, 177.
(上接第221页)
[11] 王荣, 史再峰, 高荣华, 等. 多变环境下基于多尺度卷积网络的猪个体识别[J]. 江西农业大学学报, 2020, 42(2): 391-400.
Wang Rong, Shi Zaifeng, Gao Ronghua, et al. Individual identification of pigs based on multiscale convolutional network in a variable environment [J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(2): 391-400.
[12] 魏斌. 基于深度学习的羊脸检测和识别[D]. 杨凌: 西北农林科技大学, 2020.
[13] 韩安琪. 基于深度迁移学习的小样本人脸识别研究[D]. 长沙: 国防科技大学, 2018.
[14] 黄振文, 谢凯, 文畅, 等. 迁移学习模型下的小样本人脸识别算法[J]. 长江大学学报(自然科学版), 2019, 16(7): 88-94.
[15] 王柯力, 袁红春. 基于迁移学习的水产动物图像识别方法[J]. 计算机应用, 2018, 38(5): 1304-1308, 1326.
Wang Keli, Yuan Hongchun. Aquatic animal image classification method based on transfer learning [J]. Journal of Computer Applications, 2018, 38(5): 1304-1308, 1326.
[16] Wang H, Qin J, Hou Q, et al. Cattle face recognition method based on parameter transfer and deep learning [J]. Journal of Physics: Conference Series, 2020, 1453(1): 012054.
[17] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508-2515, 2565.
Li Yandong, Hao Zongbo, Lei Hang. Survey of convolutional neural network [J]. Journal of Computer Applications, 2016, 36(9): 2508-2515, 2565.
[18] Sethi D, Arora K, Susan S. Transfer learning by deep tuning of pretrained networks for pulmonary nodule detection [C]. 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS) IEEE, 2020.
[19] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[20] 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236, 253.
Xu Jinghui, Shao Mingye, Wang Yichen, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236, 253.
[21] Banan A, Nasiri A, TaheriGaravand A. Deep learningbased appearance features extraction for automated carp species identification [J]. Aquacultural Engineering, 2020, 89: 134-139.
|