Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (1): 178-184.DOI: 10.13733/j.jcam.issn.2095-5553.2023.01.025
Previous Articles Next Articles
Dong Xiuchun, Jiang Yi, Yang Yuting, Guo Tao, Li Zongnan, Li Zhangcheng.
Online:
2023-01-15
Published:
2023-01-18
董秀春,蒋怡,杨玉婷,郭涛,李宗南,李章成
基金资助:
CLC Number:
Dong Xiuchun, Jiang Yi, Yang Yuting, Guo Tao, Li Zongnan, Li Zhangcheng.. Spatial information extraction of citrus orchard based on semantic segmentation model and remote sensing[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 178-184.
董秀春, 蒋怡, 杨玉婷, 郭涛, 李宗南, 李章成. 基于语义分割模型和遥感的柑橘园空间信息提取[J]. 中国农机化学报, 2023, 44(1): 178-184.
[1] 刘凤之, 王海波, 胡成志. 我国主要果树产业现状及“十四五”发展对策[J]. 中国果树, 2021(1): 1-5. Liu Fengzhi, Wang Haibo, Hu Chengzhi. Current situation of main fruit tree industry in China and its development countermeasure during the “14th fiveyear plan” period [J]. China Fruits, 2021(1): 1-5. [2] 郭文武, 叶俊丽, 邓秀新. 新中国果树科学研究70年——柑橘[J]. 果树学报, 2019, 36(10): 1264-1272. Guo Wenwu, Ye Junli, Deng Xiuxin. Fruit scientific research in New China in the past 70 years: Citrus [J]. Journal of Fruit Science, 2019, 36(10): 1264-1272. [3] 丁文雁, 袁斌, 周应恒. 中国水果产业增长模式及趋势分析——以柑橘为例[J]. 世界农业, 2017(12): 148-155, 259-260. Ding Wenyan, Yuan Bin, Zhou Yingheng. Analysis on growth pattern and trend of fruit industry in China: Take citrus for example [J]. World Agriculture, 2017(12): 148-155, 259-260. [4] 林正雨, 陈强, 邓良基, 等. 中国柑橘生产空间变迁及其驱动因素[J]. 热带地理, 2021, 41(2): 374-387. Lin Zhengyu, Chen Qiang, Deng Liangji, et al. Spatial pattern changes and driving factors of citrus production in China [J]. Tropical Geography, 2021, 41(2): 374-387. [5] 〖JP3〗张强强, 司瑞石, 施凡基, 等. 中国水果生产集中化水平的演进趋势[J]. 中国农业资源与区划, 2021, 42(2): 96-108. Zhang Qiangqiang, Si Ruishi, Shi Fanji, et al. The evolution trend of Chinese fruit production concentration level [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(2): 96-108. [6] 王刘坤, 祁春节. 中国柑橘主产区的区域比较优势及其影响因素研究——基于省级面板数据的实证分析[J]. 中国农业资源与区划, 2018, 39(11): 121-128. Wang Liukun, Qi Chunjie. Research on the comparative advantage and its influencing factors of in Chinese citrus main producing region: Empirical analysis based on interprovincial panel data [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(11): 121-128. [7] 徐晗泽宇. 赣南柑橘果园扩张及其对景观影响的遥感研究[D]. 南昌: 江西师范大学, 2018. Xu Hanzeyu. Study on the expansion of citrus orchard in gannan region and its influence on landscape characteristics with timeseries landsat images [D]. Nanchang: Jiangxi Normal University, 2018. [8] 李发林, 曾瑞琴, 危天进, 等. 福建省平和县琯溪蜜柚果园土壤磷环境风险评价研究[J]. 中国生态农业学报, 2015, 23(8): 1001-1009. Li Falin, Zeng Ruiqin, Wei Tianjin, et al. Risk assessment in soil phosphorus environment of Guanxi pummelo orchard in Pinghe County, Fujian Province [J]. Chinese Journal of EcoAgriculture, 2015, 23(8): 1001-1009. [9] 〖JP3〗史舟, 管彦良, 王援高, 等. 遥感与GIS技术支持下的黄岩区柑橘种植结构调整[J]. 经济地理, 2002, 22(6): 727-730. Shi Zhou, Guan Yanliang, Wang Yuangao, et al. Adjustment of citrus planting structure supported by the integrated remote sensing and GIS [J]. Economic Geography, 2002, 22(6): 727-730. [10] 徐晗泽宇, 刘冲, 王军邦, 等. Google Earth Engine平台支持下的赣南柑橘果园遥感提取研究[J]. 地球信息科学学报, 2018, 20(3): 396-404. Xu Hanzeyu, Liu Chong, Wang Junbang, et al. Study on extraction of citrus orchard in gannan region based on Google Earth Engine platform [J]. Journal of Geoinformation Science, 2018, 20(3): 396-404. [11] 〖JP3〗梁晨欣, 黄启厅, 王思, 等. 基于多时相遥感植被指数的柑橘果园识别[J]. 农业工程学报, 2021, 37(24): 168-176. Liang Chenxin, Huang Qiting, Wang Si, et al. Identification of citrus orchard under vegetation indexes using multitemporal remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24): 168-176. [12] 祁媛, 徐伟诚, 王林琳, 等. 基于无人机遥感影像的沙糖橘果树提取方法研究[J]. 华南农业大学学报, 2020, 41(6): 126-133. Qi Yuan, Xu Weicheng, Wang Linlin, et al. Study on the extraction method of sugar tangerine fruit trees based on UAV remote sensing images [J]. Journal of South China Agricultural University, 2020, 41(6): 126-133. [13] 蒋怡, 李宗南, 任国业, 等. 基于GF-1 PMS影像的柠檬种植面积估算[J]. 中国农业资源与区划, 2016, 37(11): 50-55. Jiang Yi, Li Zongnan, Ren Guoye, et al. Estimation of lemon planted area based on GF-1 PMS image [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(11): 50-55. [14] 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468. Tian Xuan, Wang Liang, Ding Qi. Review of image semantic segmentation based on deep learning [J]. Journal of Software, 2019, 30(2): 440-468. [15] 陈前, 郑利娟, 李小娟, 等. 基于深度学习的高分遥感影像水体提取模型研究[J]. 地理与地理信息科学, 2019, 35(4): 43-49. Chen Qian, Zheng Lijuan, Li Xiaojuan, et al. Water body extraction from highresolution satellite remote sensing images based on deep learning [J]. Geography and Geoinformation Science, 2019, 35(4): 43-49. [16] 杨瑞, 祁元, 苏阳. 深度学习U-Net方法及其在高分辨卫星影像分类中的应用[J]. 遥感技术与应用, 2020, 35(4): 767-774. Yang Rui, Qi Yuan, Su Yang. U-Net neural networks and its application in high resolution satellite image classification [J]. Remote Sensing Technology and Application, 2020, 35(4):767-774. [17] Osco L P, Nogueira K, Ramos A P M, et al. Semantic segmentation of citrusorchard using deep neural networks and multispectral UAV-based imagery [J]. Precision Agriculture, 2021(4): 1-18. [18] Anagnostis A, Tagarakis A C, Kateris D, et al. Orchard mapping with deep learning semantic segmentation [J]. Sensors, 2021, 21(11): 3813. [19] Lin C, Jin Z, Mulla D, et al. Toward largescale mapping of tree crops with highresolution satellite imagery and deep learning algorithms: A case study of olive orchards in Morocco [J]. Remote Sensing, 2021, 13(9): 1740. [20] 刘佳, 王利民, 滕飞, 等. Google Earth影像辅助的农作物面积地面样方调查[J]. 农业工程学报, 2015, 31(24): 157-162. Liu Jia, Wang Limin, Teng Fei, et al. Crop area ground sample survey using Google Earth imageaided [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 149-154. [21] 董秀春, 蒋怡, 王思, 等. 基于U-Net的甘蔗提取方法[J]. 中国农业信息, 2019, 31(6): 29-34. Dong Xiuchun, Jiang Yi, Wang Si, et al. Extraction of sugarcane from Google Earth image based on the U-Net model [J]. China Agricultural Informatics, 2019, 31(6): 29-34. [22] 邝辉宇, 吴俊君. 基于深度学习的图像语义分割技术研究综述[J]. 计算机工程与应用, 2019, 55(19): 12-21, 42. Kuang Huiyu, Wu Junjun. Survey of image semantic segmentation based on deep learning [J]. Computer Engineering and Applications, 2019, 55(19): 12-21, 42. [23] 何红术, 黄晓霞, 李红旮, 等. 基于改进U-Net网络的高分遥感影像水体提取[J]. 地球信息科学学报, 2020, 22(10): 2010-2022. He Hongshu, Huang Xiaoxiao, Li Hongga, et al. Water body extraction of high resolution remote sensing image based on improved U-Net network [J]. Journal of Geoinformation Science, 2020, 22(10): 2010-2022. [24] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [C]. International Conference on Medical Image Computing and ComputerAssisted Intervention. Springer, Cham, 2015: 234-241. [25] Chen L C, Zhu Y K, Papandreou G, et al. Encoderdecoder with atrous separable convolution for semantic image segmentation [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818. [26] 苟杰松, 蒋怡, 李宗南, 等. 基于Deeplabv3+模型的成都平原水产养殖水体信息提取[J]. 中国农机化学报, 2021, 42(3): 105-112. Gou Jiesong, Jiang Yi, Li Zongnan, et al. Aquaculture water body information extraction in the Chengdu plain based on DeepLabv3+ model [J]. Journal of Chinese Agriculture Mechanization, 2021, 42(3): 105-112. [27] 苏健民, 杨岚心, 景维鹏. 基于U-Net的高分辨率遥感图像语义分割方法[J]. 计算机工程与应用, 2019, 55(7): 207-213. Su Jianmin, Yang Lanxin, Jing Weipeng. U-Net based semantic segmentation method for high resolution remote sensing image [J]. Computer Engineering and Applications, 2019, 55(7): 207-213. |
[1] | . Detection method and validation analysis based on the improved YOLOX-s apple blossom growth state [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 162-167. |
[2] | Xu Tao, Lü Xiaolan, , Qi Yannan, Zeng Jin, Lei Xiaohui, Yuan Quanchun. Research status on equipment and technology of orchard airassisted sprayer in China [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 69-77. |
[3] | Sun Mengyao, Hu Bingbing, Chen Hua, Chen Yumei, Wu Caicong, Xu Lanjun. Operation quality assessment of unmanned wheat system based on UAV remote sensing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 148-154. |
[4] | Zhao Chengyue, , Ma Wei, Sudao Bilige, Tan Yu. Design of a following transport robot based on lidar and vision fusion [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 176-181. |
[5] | Liu Shikun, , Jin Chengqian, Chen Man, Yang Tengxiang, Xu Jinshan. Online detection method of detecting crushing rate of soybean harvesters based on DeepLabV3+ network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 170-175. |
[6] | Fu Hao, , Zhao Xueguan, Zhai Changyuan, , Zheng Kang, Zheng Shenyu, Wang Xiu. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207. |
[7] | Li Yanzhou, He Yanzhou, , Qin Feng, , Qian Wanqiang, Wu Mei, Qiao Xi, . Identification of Spartina alterniflora based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 159-166. |
[8] | Deng Xiangwu, Liang Song, Qi Long, Yu Shuting. Method study on semantic segmentation of weeds at seedling stage in paddy fields based on DeepLabV3+ model [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 174-180. |
[9] | Xiong Qin, Xiao Liping, Cai Jinping, Dong Wei, Zhang Hong, Tao Zhongyan. Design and implementation of integration of medicine, water and fertilizer control system based on Internet of Things in orchard [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 73-81. |
[10] | Liu Zhen, Sun Yuan, Jiao Shuaifeng, Cheng Yuanlei, Chen Yunping. Design and application of LAI automatic network measurement system based on hemispherical photography [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 123-131. |
[11] | Li Zimao, Li Jiahui, Yin Fan, Tie Jun, Wu Qianbao.. Dense citrus detection algorithm based on deformable convolution and SimAM attention [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 156-162. |
[12] | Chen Pinlan, Zhang Xiaohua, Zhu Lixue, Li Haolin. . Citrus recognition system design based on Raspberry Pi and deep learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 131-136. |
[13] | Wang Qiang, He Lei, Zhou Yan, Pan Yunfei, Song Long, Song Zhenshuai.. Development status and trend of control system of the orchard branches crushing machinery [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(9): 238-244. |
[14] | Guo Wei, Gao Chunfeng, Qiao Hongbo, Li Chengwei, Zhang Feng, Zhang Hui.. Severity monitoring of cotton spider mite based on UAV digital image [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 143-150. |
[15] | Song Zhongshan, Wang Jin, Zheng Lu, Tie Jun, Zhu Zutong.. Research on citrus pest identification based on Binary Faster R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(6): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296