[1]
赵杰文, 刘木华, 杨国彬. 基于HIS颜色特征的田间成熟番茄识别技术[J]. 农业机械学报, 2004, 35(5): 122-124, 135.
Zhao Jiewen, Liu Muhua, Yang Guobin. Discrimination of mature tomato based on HIS color space in natural outdoor scenes [J]. Transactions of the Chinese Society of Agricultural Machinery, 2004, 35(5): 122-124, 135.
[2]
王玉飞, 尹建军, 仲苏玉, 等. 基于特征分析的番茄识别及其软件的快速开发[J]. 计算机工程与设计, 2011, 32(11): 3824-3827.
Wang Yufei, Yin Jianjun, Zhong Suyu, et al. Tomato recognition based on feature analysis and fast development of recognition software [J]. Computer Engineering and Design, 2011, 32(11): 3824-3827.
[3]
Chen Xuming, Yang S X. A practical solution for ripe tomato recognition and localization [J]. Journal of RealTime Image Processing, 2013, 8(1): 35-51.
[4]
Iwasaki F, Imamura H. A robust recognition method for occlusion of mini tomatoes based on hue information and the curvature [J]. International Journal of Image and Graphics, 2015, 15(2): 120.
[5]
马翠花, 张学平, 李育涛, 等. 基于显著性检测与改进Hough变换方法识别未成熟番茄[J]. 农业工程学报, 2016, 32(14): 219-226.
Ma Cuihua, Zhang Xueping, Li Yutao, et al. Identification of immature tomatoes base on salient region detection and improved Hough transform method [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14): 219-226.
[6]
Li X, Lu H, Zhang L, et al. Saliency detection via dense and sparse reconstruction [C]. IEEE International Conference on Computer Vision. IEEE, 2013.
[7]
孙建桐, 孙意凡, 赵然, 等. 基于几何形态学与迭代随机圆的番茄识别方法[J]. 农业机械学报, 2019, 50(S1): 22-26, 61.
Sun Jiantong, Sun Yifan, Zhao Ran, et al. Tomato recognition method based on iterative random circle and geometric morphology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 22-26, 61.
[8]
Everingham M, Eslami S M, Gool L, et al. The Pascal Visual Object Classes challenge: A retrospective [J]. International Journal of Computer Vision, 2015, 111(1): 98-136.
[9]
Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, realtime object detection [J]. IEEE, 2016.
[10]
Redmon J, Farhadi A. YOLOv3: An Incremental Improvement [J]. arXiv eprints, 2018.
[11]
Zhu Qinfeng, Zheng Huifeng, Wang Yuebing, et al. Study on the evaluation method of sound phase cloud maps based on an improved YOLOv4 algorithm [J]. Sensors, 2020, 20(15): 4314.
[12]
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[13]
Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018: 8759-8768.
[14]
Dollár P, Appel R, Belongie S, et al. Fast feature pyramids for object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1532-1545.
[15]
Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks [J]. Advances in Neural Information Processing Systems, 2014(27): 3320-3328.
[16]
Russakovsky O, Deng Jia, Su Hao, et al. ImageNet large scale visual recognition challenge [J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[17]
Hripcsak G, Rothschild A S. Agreement, the Fmeasure, and reliability in information retrieval [J]. Journal of the American Medical Informatics Association, 2005, 12(3): 296-298.
[18]
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]. International Conference on Machine Learning, 2015: 448-456.
[19]
Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
|