[1]
张曦宇, 武佩, 宣传忠, 等. 基于加速度传感器的种公羊运动行为识别[J].中国农业大学学报, 2018, 23(11): 104-114.
Zhang Xiyu, Wu Pei, Xuan Chuanzhong, et al. Recognition of the movement behavior of stud rams based on acceleration sensor [J]. Journal of China Agricultural University, 2018, 23(11): 104-114.
[2]
李栋. 中国奶牛养殖模式及其效率研究[D]. 北京: 中国农业科学院, 2013.
Li Dong. Study on efficiency and model of dairy cattle breeding [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
[3]
何东健, 刘冬, 赵凯旋. 精准畜牧业中动物信息智能感知与行为检测研究进展[J]. 农业机械学报, 2016, 47(5): 231-244.
He Dongjian, Liu Dong, Zhao Kaixuan. Review of perceiving animal information and behavior in precision livestock farming [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 231-244.
[4]
Kaler J, Mitsch J, Jorge A, et al. Automated detection of lameness in sheep using machine learning approaches: Novel insights into behavioural differences among lame and nonlame sheep [J]. Royal Society Open Science, 2020, 7(1): 190824.
[5]
宣传忠, 武佩, 马彦华, 等. 基于功率谱和共振峰的母羊发声信号识别[J]. 农业工程学报, 2015, 31(24): 219-224.
Xuan Chuanzhong, Wu Pei, Ma Yanhua, et al. Vocal signal recognition of ewes based on power spectrum and formant analysis method [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 219-224.
[6]
韩丁. 草原放牧绵羊牧食行为检测识别方法研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
Han Ding. Study on the detection and identification method of sheep grazing behavior in grazing grassland [D]. Hohhot: Inner Mongolia Agricultural University, 2018.
[7]
韩书庆, 张晶, 程国栋, 等. 奶牛跛行自动识别技术研究现状与挑战[J]. 智慧农业(中英文), 2020, 2(3): 21-36.
Han Shuqing, Zhang Jing, Cheng Guodong, et al. Current state and challenges of automatic lameness detection in dairy cattle [J]. Smart Agriculture, 2020, 2(3): 21-36.
[8]
刘志伟, 李丽华. 加速度传感器在畜禽行为研究上的应用[J]. 畜牧与兽医, 2020, 52(8): 137-144.
[9]
Kuz'nicka E, Gburzyński P, et al. Automatic detection of suckling events in lamb through accelerometer data classification[J]. Computers and Electronics in Agriculture, 2017, 138: 137-147.
[10]
Barwick J, Lamb D W, Dobos R, et al. Categorising sheep activity using a triaxial accelerometer[J]. Computers and Electronics in Agriculture, 2018, 145: 289-297.
[11]
McLennan K M, Skillings E A, Rebelo C J B, et al. Technical note: Validation of an automatic recording system to assess behavioural activity level in sheep (Ovis aries) [J]. Small Ruminant Research, 2015, 127: 92-96.
[12]
刘艳秋. 舍饲环境下母羊产前典型行为识别方法研究[D]. 呼和浩特: 内蒙古农业大学, 2017.
Liu Yanqiu. Research on recognition methods for eves,typical prenatal behaviors under arousing environment [D]. Hohhot: Inner Mongolia Agricultural University, 2017.
[13]
郭东东, 郝润芳, 吉增涛, 等. 基于三轴加速度传感器的山羊行为特征分类与识别[J]. 家畜生态学报, 2014, 35(8): 53-57.
Guo Dongdong, Hao Runfang, Ji Zengtao, et al. Classification and recognition of goats daily behavior based on threedimensional acceleration sensor [J]. Acta Ecologiae Animalis Domastici, 2014, 35(8): 53-57.
[14]
刘龙申, 沈明霞, 姚文, 等. 基于加速度传感器的母猪产前行为特征采集与分析[J]. 农业机械学报, 2013, 44(3): 192-196, 191.
Liu Longshen, Shen Mingxia, Yao Wen, et al. Acquisition and analysis of sows behavior before farrowing based on acceleration sensor [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3): 192-196, 191.
[15]
Oudshoorn F W, Cornou C, Hellwing A, et al. Estimation of grass intake on pasture for dairy cows using tightly and loosely mounted di and triaxial accelerometers combined with bite count [J]. Computers and Electronics in Agriculture, 2013, 99: 227-235.
[16]
张曦宇, 宣传忠, 武佩, 等. 基于声信号的畜禽行为信息监测研究进展[J]. 黑龙江畜牧兽医, 2017(11): 63-68.
[17]
Miller G A, Mitchell M, Barker Z E, et al. Using animalmounted sensor technology and machine learning to predict timetocalving in beef and dairy cows [J]. Animal, 2020, 14(6): 1-9.
[18]
Roux S, Marias J, Wolhuter R, et al. Animalborne behaviour classification for sheep (Dohne Merino) and rhinoceros (Ceratotherium simum and Diceros bicornis) [J]. Animal Biotelemetry, 2017, 5(1): 25.
[19]
Giovanetti V, Decandia M, Molle G, et al. Automatic classification system for grazing, ruminating and resting behaviour of dairy sheep using a triaxial accelerometer [J]. Livestock Science, 2016, 196: 42-48.
[20]
杨晓龙. 奶山羊行为监测管理系统设计[D]. 杨凌: 西北农林科技大学, 2018.
Yang Xiaolong. Design of dairy goat behavior monitoring and management system [D]. Yangling: Northwest A & F University, 2018.
[21]
宣传忠, 马彦华, 武佩, 等. 基于声信号特征加权的设施养殖羊行为分类识别[J]. 农业工程学报, 2016, 32(19): 195-202.
[22]
Tani Y, Yokota Y, Yayota M, et al. Automatic recognition and classification of cattle chewing activity by an acoustic monitoring method with a singleaxis acceleration sensor [J]. Computers and Electronics in Agriculture, 2013, 92: 54-65.
[23]
Wang X H, Wang J, Yan K. Gait recognition based on Gabor wavelets and (2D)2PCA [J]. Multimedia Tools and Applications, 2018, 77(10): 12545-12561.
[24]
任晓惠, 刘刚, 张淼, 等. 基于支持向量机分类模型的奶牛行为识别方法[J].农业机械学报, 2019, 50(S1): 290-296.
Ren Xiaohui, Liu Gang, Zhang Miao, et al. Dairy cattles behavior recognition method based on support vector machine classification model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 290-296.
[25]
石文兵, 葛斌, 苏树智. 基于深度信念网络的湖羊维持行为识别[J]. 传感技术学报, 2020, 33(7): 1020-1026.
[26]
刘艳秋, 宣传忠, 武佩, 等. 基于KmeansBP神经网络的舍饲环境母羊产前运动行为分类识别[J].中国农业大学学报, 2021, 26(3): 86-95.
Liu Yanqiu, Xuan Chuanzhong, Wu Pei, et al. Classification and recognition on movement behaviors of ewes in house feeding environment based on Kmeans and BP neural network [J]. 2021, 26(3): 86-95.
[27]
Radeski M, Ilieski V. Gait and posture discrimination in sheep using a triaxial accelerometer [J]. Animal An International Journal of Animal Bioscience, 2017, 11(7): 1249-1257.
[28]
俞守华, 杨剑达, 陈紫城, 杨畅达. 基于SVM的猪只行为分类[J]. 广东农业科学, 2016, 43(3): 152-156.
[29]
Escalante H J, Rodriguez S V, Cordero J, et al. Sowactivity classification from acceleration patterns: A machine learning approach [J]. Computers and Electronics in Agriculture, 2013, 93(4): 17-26.
[30]
李丽华, 刘志伟, 赵学谦, 等. 基于加速度传感器的本交笼种鸡个体行为监测与识别[J]. 农业机械学报, 2019, 50(12): 247-254.
Li Lihua, Liu Zhiwei, Zhao Xueqian, et al. Monitoring and identification of natural mating cage breeding chickens individual behavior based on acceleration sensor [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 247-254.
|