[1]
李秀根. 近年我国梨产业发展中遇到的陷阱与建议[J]. 果农之友, 2020(12): 1-3.
[2]
陈哲, 梁瀚元. 我国西瓜产业发展与贸易趋势研究[J]. 经营与管理, 2019(9): 114-122.
[3]
张放. 2018年我国主要水果生产统计简析[J]. 中国果业信息, 2020, 37(7): 32-43.
[4]
张放. 2017年我国主要水果生产统计分析[J]. 中国果业信息, 2019, 36(10): 22-31.
[5]
许培磊, 韩先焱, 李昌禹, 等. 果树落花落果机制研究进展[J]. 特产研究, 2018, 40(4): 82-91.
Xu Peilei, Han Xianyan, Li Changyu, et al. Overview of flower and fruit drop mechanism of fruit trees [J]. Special Wild Economic Animal and Plant Research, 2018, 40(4): 82-91.
[6]
太一梅, 朱斌, 何绍华, 等. 杨梅果蝇综合防治技术研究[J]. 植物保护, 2015, 41(1): 193-195.
Tai Yimei, Zhu Bin, He Shaohua, et al. Integrated control techniques of fruit fly (Drosophila melanogaster Meigen) in waxberry [J]. Plant Protection, 2015, 41(1): 193-195.
[7]
Khamis Y, Roberto S R. Premature apple fruit drop: associated fungal species and attempted management solutions [J]. Horticulturae, 2020, 6(2): 31.
[8]
Fabrícìo E. Lanza, Weber Marti, Geraldo J. Silva, et al. Characteristics of citrus canker lesions associated with premature drop of sweet orange fruit [J]. Phytopathology. 2019, 109(1): 44-51.
[9]
Kumar T B, Kumar G P, Kumar R S, et al. Effect of nutrient management through bioorganic manures on fruit setting, fruit drop and fruit retention of acid lime (Citrus Aurantifolia Swingle) [J]. Plant Archives, 2020, 20(1): 1570-1572.
[10]
张利军, 罗自威, 王玉雯, 等. 琯溪蜜柚落花落果特性及养分损失定量化研究[J]. 果树学报, 2020, 38(4): 520-529.
Zhang Lijun, Luo Ziwei, Wang Yuwen, et al. A study on the characteristic of dropped flower and fruit and its nutrient loss quantification in Guanximiyou pomelo [J]. Journal of Fruit Science, 2020, 38(4): 520-529.
[11]
杨小慧, 石光波, 拜晓彬, 等. 文冠果落果黄酮成分分析及抑菌性评价[J]. 食品科学, 2018, 39(10): 53-58.
Yang Xiaohui, Shi Guangbo, Bai Xiaobin, et al. Flavonoid content and antibacterial activity of Xanthoceras sorbifolia Bunge fruit drop [J]. Food Science, 2018, 39(10): 53-58.
[12]
Guijarro M, Pajares G, Riomoros I, et al. Automatic segmentation of relevant textures in agricultural images [J]. Computers and Electronics in Agriculture, 2011, 75(1): 75-83.
[13]
Konstantinos L, Patrizia B, Dimitrios M, et al. Machine learning in agriculture: A review [J]. Sensors, 2018, 18(8): 2674.
[14]
Tang J L, Wang D, Zhang Z G, et al. Weed identification based on K-means feature learning combined with convolutional neural network [J]. Computers & Electronics in Agriculture, 2017, 135: 63-70.
[15]
Lebrini Y, Boudhar A, Hadria R, et al. Identifying agricultural systems using SVM classification approach based on phenological metrics in a semiarid region of Morocco [J]. Earth Systems and Environment, 2019, 3(2): 277-288.
[16]
Kamilaris A, PrenafetaBoldu F X. Deep learning in agriculture: A survey [J]. Computers and Electronics in Agriculture, 2018, 147: 70-90.
[17]
Zhu N, Xu L, Liu Z, et al. Deep learning for smart agriculture: Concepts, tools, applications, and opportunities [J]. International Journal of Agricultural and Biological Engineering, 2018, 11(4): 21-28.
[18]
Kim S, Peter C, Henrik K, et al. Using deep learning to challenge safety standard for highly autonomous machines in agriculture [J]. Journal of Imaging, 2016, 2(1): 6.
[19]
Nguyen D T, Nguyen T N, Kim H, et al. A highthroughput and powerefficient FPGA implementation of YOLO CNN for object detection [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(8): 1861-1873.
[20]
Hendry, Chen R C. Automatic license plate recognition via SlidingWindow DarknetYolo deep learning [J]. Image and Vision Computing, 2019, 87: 47-56.
[21]
Du J. Understanding of object detection based on CNN family and YOLO [C]. Journal of Physics: Conference Series. IOP Publishing, 2018, 1004(1): 012029.
[22]
Tian Y, G Yang, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLOv3 model [J]. Computers and electronics in agriculture, 2019, 157: 417-426.
[23]
Lawal M O. Tomato detection based on modified YOLOv3 framework [J]. Scientific Reports, 2021, 11(1): 1-11.
[24]
熊俊涛, 郑镇辉, 梁嘉恩, 等. 基于改进YOLO v3网络的夜间环境柑橘识别方法[J]. 农业机械学报, 2020, 51(4): 199-206.
Xiong Juntao, Zheng Zhenhui, Liang Jiaen, et al. Citrus detection method in night environment based on improved YOLO v3 Network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 199-206.
[25]
荆伟斌, 胡海棠, 程成, 等. 基于深度学习的地面苹果识别与计数[J]. 江苏农业科学, 2020, 48(5): 210-219.
|