[1]
康地, 陈泽君, 李阳, 等. 油茶果分级滚筒筛设计[J]. 湖南林业科技, 2017, 44(6): 95-98.
Kang Di, Chen Zejun, Li Yang, et al. Design of classificationtype roller sieve for Camellia oleifera fruit [J]. Hunan Forestry Science & Technology, 2017, 44(6): 95-98.
[2]
李阳, 王勇, 邓腊云, 等. 揉搓型油茶果分类脱壳分选机的脱壳和清选效果研究[J]. 湖南林业科技, 2015, 42(2): 38-42.
Li Yang, Wang Yong, Deng Layun, et al. Research on the effect of Camellia oleifera fruit sheller and sorting machine, 2015, 42(2): 38-42.
[3]
Thendral R, Suhasini A, Senthil N. A comparative analysis of edge and color based segmentation for orange fruit recognition [C]. International Conference on Communications & Signal Processing. IEEE, 2014.
[4]
Lin G, Tang Y, Zou X, et al. Fruit detection in natural environment using partial shape matching and probabilistic Hough transform [J]. Precision Agriculture, 2019, 21(1): 160-177.
[5]
苗中华, 沈一筹, 王小华, 等. 自然环境下重叠果实图像识别算法与试验[J]. 农业机械学报, 2016, 47(6): 21-26.
Miao Zhonghua, Shen Yichou, Wang Xiaohua, et al. Image recognition algorithm and experiment of overlapped fruits in natural environment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 21-26.
[6]
Wang Jianlun, He Jianlei, Han Yu, et al. An adaptive thresholding algorithm of field leaf image [J]. Computers and Electronics in Agriculture, 2013, 96(6): 23-39.
[7]
Pothen Z, Nuske S. Automated assessment and mapping of grape quality through imagebased color analysis [J]. IFACPapersOnLine, 2016, 49(16): 72-78.
[8]
MurilloBracamontes E A, MartinezRosas M E, MirandaVelasco M M, et al. Implementation of Hough transform for fruit image segmentation [J]. Procedia Engineering, 2012, 35: 230-239.
[9]
周志宇, 刘迎春, 张建新. 基于自适应Canny算子的柑橘边缘检测[J]. 农业工程学报, 2008, 24(3): 21-24.
Zhou Zhiyu, Liu Yingchun, Zhang Jianxin. Orange edge detection based on adaptive Canny operator [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(3): 21-24.
[10]
刘智杭, 于鸣, 任洪娥. 基于改进K均值聚类的葡萄果穗图像分割[J]. 江苏农业科学, 2018, 46(24): 239-244.
[11]
武锦龙, 苗荣慧, 黄锋华, 等. 高光谱图像与卷积神经网络相结合的油桃轻微损伤检测[J]. 山西农业大学学报(自然科学版), 2019, 39(2): 79-85.
Wu Jinlong, Miao Ronghui, Huang Fenghua, et al. Nectarine slight bruises detection based on the combination of hyperspectral image and convolutional neural network [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2019, 39(2): 79-85.
[12]
李凯, 张建华, 冯全, 等. 复杂背景与天气条件下的棉花叶片图像分割方法[J]. 中国农业大学学报, 2018, 23(2): 88-98.
Li Kai, Zhang Jianhua, Feng Quan, et al. Image segmentation method for cotton leaf under complex background and weather conditions [J]. Journal of China Agricultural University, 2018, 23(2): 88-98.
[13]
邓向武, 齐龙, 马旭, 等. 基于多特征融合和深度置信网络的稻田苗期杂草识别[J]. 农业工程学报, 2018, 34(14): 165-172.
Deng Xiangwu, Qi Long, Ma Xu, et al. Recognition of weeds at seedling stage in paddy fields using multifeature fusion and deep belief networks [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 165-172.
[14]
Wang Qi, Wang Hui, Xie Lijuan, et al. Outdoor color rating of sweet cherries using computer vision [J]. Computers and Electronics in Agriculture, 2012, 87: 113-120.
[15]
Pearson T, Dan M, Pearson J. A machine vision system for high speed sorting of small spots on grains [J]. Journal of Food Measurement & Characterization, 2012, 6(1-4): 27-34.
[16]
赵吉文, 魏正翠, 汪洋, 等. 基于灰度带比例的优质西瓜子识别算法研究与实现[J]. 农业工程学报, 2011, 27(4): 340-344.
Zhao Jiwen, Wei Zhengcui, Wang Yang, et al. Research and implementation of recognition algorithm based on gray scale of watermelon seeds [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(4): 340-344.
[17]
王丹丹, 何东健. 基于RFCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163.
Wang Dandan, He Dongjian. Recognition of apple targets before fruits thinning by robot based on RFCN deep convolution neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 156-163.
[18]
Masuda H, Nojima Y, Ishibuchi H. Visual examination of the behavior of EMO algorithms for manyobjective optimization with many decision variables [C]. Evolutionary Computation. IEEE, 2014: 2633-2640.
[19]
崔鹏宇. 多维特征融合与AdaboostSVM的车辆识别算法[J]. 控制工程, 2019, 26(3): 608-612.
Cui Pengyu. A vehicle target distinguish algorithm based on multifeature fusion and AdaboostSVM [J]. Control Engineering of China, 2019, 26(3): 608-612.
|