[1]
2019“一带一路”国际茶产业发展论坛暨第五届中国茶业大会. 我国茶园面积及茶叶年产量稳居世界第一[EB/OL]. http://www.xinhuanet.com/food/2019-11/01/c_1125179715.htm, 2019-11-01.
[2]
徐志武. 茶树病虫害绿色防控现状及对策[J]. 现代农业科技, 2014(6): 157-158.
[3]
郭勤, 高楠, 汪勇, 等. 我国茶树农药应用现状及问题分析[J]. 中国植保导刊, 2014, 34(8): 58-61.
[4]
Zhu L, Ge J R, Qi Y Y, et al. Droplet impingement behavior analysis on the leaf surface of ShuChaZao under different pesticide formulations [J]. Computers and Electronics in Agriculture, 2018, 144: 16-25.
[5]
李向阳. 贵州山地茶园高工效施药技术方法与教学实践[J]. 现代职业教育, 2018(7): 39.
[6]
周开云, 江仕龙, 江健, 等. 超低容量静电喷雾器应用于茶树病虫害防治效果[J]. 中国植保导刊, 2015, 35(7): 67-69.
[7]
陈丹, 任广伟, 王秀芳, 等. 4种喷雾器在茶树上喷雾效果比较[J]. 植物保护, 2011, 37(5): 110-114.
Chen Dan, Ren Guangwei, Wang Xiufang, et al. Spray performance of four sprayers in the tea garden [J]. Plant Protection, 2011, 37(5): 110-114.
[8]
冉隆珣, 李荣福, 蔡丽, 等. 多功能静电喷雾器防治茶轮斑病试验初报[J]. 湖南农业科学, 2014(14): 41-42.
Ran Longxun, Li Rongfu, Cai Li, et al. Control of pestalotiopsis theae by 3WBJ-16DZ multifunctional electrostatic sprayer [J]. Hunan Agricultural Sciences, 2014(14): 41-42.
[9]
许姗姗, 郭萧, 彭萍, 等. 几种喷雾器在茶园中的使用性能与效果对比研究[J]. 西南农业学报, 2012, 25(6): 2311-2315.
Xu Shanshan, Guo Xiao, Peng Ping, et al. Comparison on performances of several knapsack sprayers in tea garden [J]. Southwest China Journal of Agricultural Sciences, 2012, 25(6): 2311-2315.
[10]
罗宗秀, 边磊, 蔡晓明, 等. 新型茶园管理机的农药雾滴沉积特性及田间药效评价[J]. 茶叶科学, 2016, 31(1): 52-58.
Luo Zongxiu, Bian Lei, Cai Xiaoming, et al. Pesticide deposit characteristics and its field efficacy evaluation of a new type of tea management machine [J]. Journal of Tea Science, 2016, 31(1): 52-58.
[11]
周莉萍. 无人机机载喷雾系统喷雾特性及影响因素的研究[D]. 杭州: 浙江大学, 2017.
Zhou Liping. Research of spraying characteristics and effecting factors in UAV airborne spray system [D]. Hangzhou: Zhejiang University, 2017.
[12]
王立. 成龄茶树叶片的冠层结构[J]. 中国茶叶, 1986(3): 2-3.
[13]
刘冬梅, 周宏平, 郑加强, 等. 茶树叶片表面喷雾液滴斜撞击行为研究[J]. 农业机械学报, 2019, 50(5): 97-103, 195.
Liu Dongmei, Zhou Hongping, Zheng Jiaqiang, et al. Oblique impact behavior of spray droplets on tea tree leaves surface [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 97-103, 195.
[14]
云茶大典. 现如今的茶树叶片都有哪些特点[EB/OL]. http://www.ishuocha.com/baike/zhishi/31228.html, 2018-01-28.
[15]
Smith D B, Askew S D, Morris W H, et al. Droplet size and leaf morphology effects on pesticide spray deposition [J]. Transactions of the ASAE, 2000, 43(2): 255-259.
[16]
中国生物器材网. 茶树病虫害防治工作的重要性分析[EB/OL]. https://www.bioequip.com/showarticle.asp?ID=453077088, 2014-06-16.
[17]
Roy S, Handique G, Muraleedharan N, et al. Use of plant extracts for tea pest management in India [J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4831-4844.
[18]
Roy S, Prasad A, Pradhan B, et al. Pestiferous red slug caterpillars of eterusiaaedea (lepidoptera:zygaenidae):status, bioecology and management in tea plantations of India [J]. Journal of the Lepidopterists Society, 2018, 72(1): 87-95.
[19]
彭萍, 王晓庆, 肖玉华, 等. 茶树病虫害预测预报方法的回顾与展望[J]. 西南农业学报, 2010, 23(5): 1742-1745.
Peng Ping, Wang Xiaoqing, Xiao Yuhua, et al. Review and prospect on forecasting of tea pests and diseases [J]. Southwest China Journal of Agricultural Sciences, 2010, 23(5): 1742-1745.
[20]
宫彦萍, 黄文江, 王纪华, 等. 集成GIS和RS技术的作物病虫害监测预报研究进展[J]. 农业工程学报, 2008, 24(S2): 331-336.
Gong Yanping, Huang Wenjiang, Wang Jihua, et al. Progress and application of integrating GIS and RS technology to monitor and forecast crop diseases and pests [J]. Transactions of the CSAE, 2008, 24(S2): 331-336.
[21]
徐德良, 王敏鑫, 邵元海. 物联网技术在茶树病虫害防治中的探讨[J]. 茶叶, 2014, 40(3): 155-156, 163.
Xu Deliang, Wang Minxin, Shao Yuanhai. Application of Internet of Things technology in control of tea plant diseases and pests [J]. Journal of Tea, 2014, 40(3): 155-156, 163.
[22]
吴灵芝. 基于RS理论与模糊推理的农业病虫害预测预报[D]. 南昌: 南昌大学, 2015.
Wu Lingzhi. Agricultural diseases and pests forecasting based on RS theory and fuzzy reasoning [D]. Nanchang: Nanchang University, 2015.
[23]
汪辉进. 茶树病虫害智能化防治专家系统研究与应用[J]. 安徽农业科学, 2011, 39(23): 14410-14411.
Wang Huijin. Study and application of the intelligentized controlled expert system on the tea plant diseases and insect pests [J]. Journal of Anhui Agricultural Sciences, 2011, 39(23): 14410-14411.
[24]
敬廷桃, 詹火木, 姚永红, 等. 基于B/S模式的茶树病虫害综合防治信息系统研发[J]. 农业网络信息, 2014(5): 44-47.
Jing Tingtao, Zhan Huomu, Yao Yonghong, et al. Design and implementation on the integrated control information system of tea diseases and insect pests based on B/S mode [J]. Agricultural Network Information, 2014(5): 44-47.
[25]
霍达, 郑慕蓉, 汪云刚, 等. 我国茶树病虫害专家系统研究进展及对策[J]. 中国热带农业, 2016(3): 78-80.
[26]
李敏, 叶煜, 文燕, 等. 基于Android平台的茶树病虫害查询诊断系统的思考与探索[J]. 四川农业科技, 2018(9): 27-29.
[27]
邓立苗, 孙华丽, 于仁师. 茶树病虫害远程诊断系统的构建[J]. 安徽农业科学, 2015, 43(14): 311-313.
Deng Limiao, Sun Huali, Yu Renshi. Construction of remote diagnosis system of tea pests and diseases [J]. Journal of Anhui Agricultural Sciences, 2015, 43(14): 311-313.
[28]
刘万才, 武向文, 任宝珍, 等. 美国的农作物病虫害数字化监测预警建设[J]. 中国植保导刊, 2010, 30(8): 51-54.
[29]
Anonymous. Field demonstration experiment on IPM at Borsapori T.E. Final Technical Report [R]. Assam: Tocklai Tea Research Institute, 2014.
[30]
金晶, 罗列万. 日本静冈茶产业特点与借鉴之浅析[J]. 茶叶, 2014, 40(2): 83-86.
Jin Jing, Luo Liewan. Features and experiences of Japans Shizuoka tea industry [J]. Journal of Tea, 2014, 40(2): 83-86.
[31]
Hu Y G, Liu S Z, Wu W Y, et al. Optimal flight parameters of unmanned helicopter for tea plantation frost protection [J]. International Journal of Agricultural & Biological Engineering, 2015, 8(5): 50-57.
[32]
Borthakur M C. Need for an integrated approach to pest management [J]. Two and a Bud, 1993, 4: 2-5.
[33]
Sinu P A. Avian pest control in tea plantations of subHimalayan plains of Northeast India: Mixedspecies foraging flock matters [J]. Biological Control, 2011, 58(3): 362-366.
[34]
Whelan C J, Wenny D G, Marquis R J. Ecosystem services provided by birds [J]. Annals of the New York Academy of Sciences, 2008, 1134(1): 25-60.
[35]
Philpott S M, Soong O, Lowenstein J H, et al. Functional richness and ecosystem services: Bird predation on arthropods in tropical agroecosystems [J]. Ecological Applications, 2009, 19(7): 1858-1867.
[36]
Sola P. Botanical pesticide production, trade and regulatory mechanisms in subSaharan Africa: making a case for plantbased pesticidal products [J]. Food Security, 2014, 6(3): 369-384.
[37]
Kakoty N N. How effective is your spraying [J]. Two Bud, 1994, 41: 9-11.
[38]
刘冬梅, 周宏平, 茹煜, 等. 扇形喷头结构和压力对微生物农药雾滴分布及活性的影响[J]. 农业工程学报, 2018, 34(21): 65-72.
Liu Dongmei, Zhou Hongping, Ru Yu, et al. Effect of fan nozzle type and pressure on distribution and activity of microbial pesticide droplets [J]. Transactions of the CSAE, 2018, 34(21): 65-72.
[39]
Damato T C, Carrasco L D M, CarmonaRibeiro A M, et al. The interactions between surfactants and the epicuticular wax on soybean or weed leaves: Maximal crop protection with minimal wax solubilization [J]. Crop Protection, 2017, 91: 57-65.
[40]
Li T H, Pan Z K. Research on the LED pest control light for tea plantations [J]. Journal of Computational & Theoretical Nanoscience, 2016, 13(4): 2296-2299.
[41]
日本茶の輸出拡大を目指した栽培·加工技術集[EB/OL]. http://www. docin.com/p778903423.html, 2019-05-23.
[42]
“插上科技的翅膀”—日照赴日茶业考察团考察报告[EB/OL]. http://www.dzwww.com/shandong/sdxwjxs/rz_132269/201512/t20151228_13582767.htm, 2019-05-23.
[43]
农业农村部南京农业机械化研究所.全国茶园机械现场演示观摩会在江苏成功举办[EB/OL]. http://www.echinatea.cn/news/6/45774.aspx, 2019-05-23.
[44]
胡永光, 朱霄岚, 赵梦龙, 等. 茶园防霜机不同时间尺度作用效果研究[J]. 农业机械学报, 2013, 44(12): 252-257.
Hu Yongguang, Zhu Xiaolan, Zhao Menglong, et al. Operation effects of wind machines for frost protection of tea trees on different time scales [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 252-257.
[45]
徐德良, 王敏鑫, 邵元海. 茶树害虫物理防治的现状及展望[J]. 中国茶叶, 2013(1): 7-8, 12.
[46]
何雄奎. 我国植保无人机喷雾系统与施药技术[J]. 农业工程技术, 2018, 38(9): 33-38.
[47]
王方. 茶园管理也要机械化[EB/OL]. http://news.sciencenet.cn/sbhtmlnews/2015/8/303186.shtm?id=303186, 2019-05-02.
[48]
Hocevar M, Sirok B, Jeicic V, et al. Design and testing of an automated system for targeted spraying in orchards [J]. Journal of Plant Diseases and Protection, 2010, 117(2): 71-79.
[49]
Osterman A, Godesa T, Hocevar M, et al. Realtime positioning algorithm for variablegeometry airassisted orchard sprayer [J]. Computers and Electronics in Agriculture, 2013, 98: 175-182.
[50]
MirandaFuentes A, Rodriguez L, Cuenca A, et al. Improving plant protection product applications in traditional and intensive olive orchards through the development of new prototype airassisted sprayers [J]. Crop Protection, 2017, 94: 44-58.
[51]
李龙龙, 何雄奎, 宋坚利, 等. 基于变量喷雾的果园自动仿形喷雾机的设计与试验[J]. 农业工程学报, 2017, 33(1): 70-76.
Li Longlong, He Xiongkui, Song Jianli, et al. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate [J]. Transactions of the CSAE, 2017, 33(1): 70-76.
[52]
尹翔宇. 变喷杆喷雾机喷杆自动仿形系统的研究[D]. 南京: 南京林业大学, 2015.
Yin Xiangyu. The study of automatic profiling system for shiftable boom sprayer [D]. Nanjing: Nanjing Forestry University, 2015.
[53]
袁会珠, 王国宾. 雾滴大小和覆盖密度与农药防治效果的关系[J]. 植物保护, 2015(6): 9-16.
Yuan Huizhu, Wang Guobin. Effects of droplet size and deposition density on field efficacy of pesticides [J]. Plant Protection, 2015(6): 9-16.
[54]
邱白晶, 闫润, 马靖, 等. 变量喷雾技术研究进展分析[J]. 农业机械学报, 2015, 46(3): 59-72.
Qiu Baijing, Yan Run, Ma Jing, et al. Research progress analysis of variable rate sprayer technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 59-72.
[55]
廖侦成, 曹潘荣, 穆小婷. 中国有机茶发展的现状与对策[J]. 广东茶业, 2013(6): 16-19.
[56]
夏兵, 孙达, 朱婧, 等. 我国有机茶发展现状分析[J]. 农产品加工, 2021(1): 68-70.
|