[ 1 ] 丁声俊. 全面落实新部署 稳健奋进新征程——学习2022年“中央一号文件”的思考[J]. 粮食问题研究, 2022(4): 4-9, 15.
[ 2 ] 王妍, 张晓龙, 石嘉丽, 等. 中国冬小麦主产区气候变化及其对小麦产量影响研究[J]. 中国生态农业学报(中英文), 2022, 30(5): 723-734.
Wang Yan, Zhang Xiaolong, Shi Jiali, et al. Climate change and its effect on winter wheat yield in the main winter wheat production areas of China [J]. Chinese Journal of Eco‑Agriculture, 2022, 30(5): 723-734.
[ 3 ] 韩兰英, 张强, 程英, 等. 农业干旱灾害风险研究进展及前景分析[J]. 干旱区资源与环境, 2020, 34(6): 97-102.
Han Lanying, Zhang Qiang, Cheng Ying, et al. Research progress of agriculture drought disaster risk and prospect [J]. Journal of Arid Land Resources and Environment, 2020, 34(6): 97-102.
[ 4 ] Orlandi F, Ruga L, Fornaciari M. Willow phenological modelling at different altitudes in central Italy [J]. Environmental Monitoring and Assessment, 2020, 192(11): 1-12.
[ 5 ] 杨近鹏, 何英彬, 张胜利, 等. 基于光温模型的吉林省马铃薯物候期预测效果比较[J]. 江苏农业科学, 2021, 49(19): 209-215.
Yang Jinpeng, He Yingbin, Zhang Shengli, et al. Comparative study on potato phenological period prediction effects based on photothermal model in Jilin Province [J]. Jiangsu Agricultural Sciences, 2021, 49(19): 209-215.
[ 6 ] Tian S, Chen C, Song L, et al. Initial flowering prediction of different types of peaches in Longquanyi based on effective accumulated temperature [J]. Journal of Environmental Protection and Ecology, 2020, 21(3): 876-885.
[ 7 ] 刘振宇, 曹晓霞, 史有瑜, 等. 基于SW物候模型“牛妈妈枣”收获期预测[J]. 农村经济与科技, 2019, 30(20): 22-23.
[ 8 ] 郭睿. 杨凌地区桃树花期预测模型研究[D]. 杨凌: 西北农林科技大学, 2016.
[ 9 ] Zhang J, Zhao Y, Wang C, et al. Effects of climate change on winter wheat growth and yield in North China [J]. The Journal of Applied Ecology, 2006, 17(7): 1179-1184.
[10] 崔冬冬. 阳光玫瑰葡萄生产数字化研究[D]. 泰安: 山东农业大学, 2022.
[11] 关鹏, 郑一力. 基于LSTM和GRU模型的森林物候预测研究(英文)[J]. 资源与生态学报(英文版), 2023, 14(1): 25-34.
Guan Peng, Zheng Yili. Research on forest phenology prediction based on LSTM and GRU model [J]. Journal of Resources and Ecology, 2023, 14(1): 25-34.
[12] 凌小方. 气候变化情景下青藏高原植被物候期时空变化研究[D]. 成都: 电子科技大学, 2022.
[13] 姜海燕, 赵空暖, 汤亮, 等. 基于自适应差分进化算法的水稻物候期预测模型参数自动校正[J]. 农业工程学报, 2018, 34(21): 176-184.
Jiang Haiyan, Zhao Kongnuan, Tang Liang, et al. Automatic calibration of parameters for crop phenological predicting model based on adaptive differential evolution algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 176-184.
[14] 徐相明, 顾品强, 陈丛敏, 等. 莎车巴旦姆物候期对气象条件的响应及花期预测模型[J]. 应用生态学报, 2016, 27(2): 421-428.
[15] Cuccia C, Bois B, Richard Y, et al. Phenological model performance to warmer conditions: Application to Pinot noir in Burgundy [J]. Oeno One, 2014, 48(3): 169-178.
[16] Böttcher U, Rampin E, Hartmann K, et al. A phenological model of winter oilseed rape according to the BBCH scale [J]. Crop and Pasture Science, 2016, 67(4): 345-358.
[17] 邓玉睿, 程旭东, 唐芳, 等. 基于多元线性回归分析和随机森林算法的水稻贮藏霉变风险控制(英文)[J]. 中国科学技术大学学报, 2022, 52(1): 47-54, 72.
[18] 康西言, 董航宇, 姚树然. 基于气象因子的冬小麦发育期预报模型[J]. 中国农业气象, 2015, 36(4): 465-471
[19] 杨梅, 肖静, 蔡辉. 多元分析中的多重共线性及其处理方法[J]. 中国卫生统计, 2012, 29(4): 620-624.
[20] Mao C X, Zhang J P. Ridge regression for small sample size and multicollinearity problems: A review [J]. AIP Advances, 2014, 4(12): 127104.
[21] Lockhart R, Taylor J, Tibshirani R J, et al. A significance test for the lasso [J]. The Annals of Statistics, 2014, 42(2): 413-468.
[22] Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests [J]. Psychological Methods, 2009, 14(4): 323-348.
[23] Belciug S, Gorunescu F, Zhang Y. Handling small datasets with K—Nearest neighbors in classification and regression tasks [C]. 25th International Symposium on Computer‑Based Medical Systems (CBMS), 2012.
[24] Chen P, He H. An improved support vector regression for small sample and high‑dimensional data [J]. Expert Systems with Applications, 2012, 39(2): 1885-1889.
|