[ 1]赵志坚 .汽油机气门间隙异常和失火故障智能诊断方法研究[ D].北京:北京化工大学, 2021.
[ 2]张康,陶建峰,覃程锦,等 .随机丢弃和批标准化的深度卷积神经网络汽油机失火故障诊断[ J].西安交通大学学报, 2019,53(8):159-166.
Zhang Kang,Tao Jianfeng,Qin Chengjin,et al. Diesel engine misfire diagnosis with deep convolutional neural network using dropout and batch normalization[J]. Journal of Xi′an Jiaotong University,2019,53(8):159-166.
[ 3]孔子迁,邓蕾,汤宝平,等 .基于时频融合和注意力机制的深度学习行星齿轮箱故障诊断方法[ J].仪器仪表学报, 2019,40(6):221-227.
Kong Ziqian, Deng Lei, Tang Baoping, et al. Fault diagnosis of planetary gearbox based on deep learningwith time.frequency fusion and attention mechanism[J]. Chinese Journal of Scientific Instrument,2019,40(6): 221-227.
[ 4]袁建虎,韩涛,唐建,等 .基于小波时频图和 CNN的滚动轴承智能故障诊断方法[ J].机械设计与研究, 2017, 33(2):93-97.
Yuan Jianhu,Han Tao,Tang Jian,et al. An approach to intelligent fault diagnosis of rolling bearing using wavelet time.frequency representations and CNN[J]. Machine Design and Research,2017,33(2):93-97.
[ 5]高文志,王彦军,王欣伟,等 .基于卷积神经网络的汽油机失火故障实时诊断[ J].吉林大学学报(工学版), 2022,52(2):417-424.
Gao Wenzhi, Wang Yanjun, Wang Xinwei, et al. Real.time diagnosis for misfire fault of diesel engine based on convolutional neural network[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2):417-424.
[ 6]张俊红,孙诗跃,朱小龙,等 .基于改进卷积神经网络的汽油机故障诊断方法研究[ J].振动与冲击, 2022,41(6):139-146.
Zhang Junhong,Sun Shiyue,Zhu Xiaolong,et al. Diesel engine fault diagnosis based on an improved convolutional neural network[J]. Vibration and Shock,2022,41(6): 139-146.
[ 7]Qin C J, Jin Y R, Tao J F, et al. A deep twin convolutional neural networks with multi.domain inputs for strongly noisy diesel engine misfire detection[J].
Measurement,2021,180:109548.
[ 8]张攀,高文志,高博,等 .基于人工神经网络的汽油机失火故障诊断[ J].振动、测试与诊断, 2022,40(4):702-710.
Zhang Pan,Gao Wenzhi,Gao Bo,et al. Misfire detection of diesel engine based on artificial neural networks[J]. Journal of Vibration Measurement & Diagnosis,2022,40(4):702-710.
[ 9]石新发,邢广笑,贺石中,等 .基于嫡理论和 BP神经网络的船舶汽油机磨损故障识别[ J].润滑与密封, 2022, 47(7):54-58.
[10]李泽东,李志农,陶俊勇,等 .基于特征融合的注意力增强卷积神经网络的航空发动机滚动轴承故障诊断方法[ J].兵工学报, 2022,43(12): 3229-3239.
[11]李俊,苏凯,张皓光,等 .基于多注意力机制的端到端滚动轴承故障诊断方法[ J].空军工程大学学报, 2023,24(4):28-34.
Li Jun,Su Kai,Zhang Haoguang,et al. Multi-attention mechanism based end.to.end rolling bearing fault diagnosis method[J]. Journal of Air Force Engineering,2023,24(4):28-34.
[12]钱思宇 .滚动轴承故障诊断端到端的卷积神经网络模型和分析[ D].郑州:郑州大学, 2022.
[13]Viet T, Jaeyoung K, Ali K S, et al. Bearing fault diagnosis under variable speed using convolutional neural networks and the stochastic diagonal Levenberg.Marquardt algorithm[J]. Sensors,2017,17(12):2834.
[14]聂慧兰 .基于深度神经网络的设备声音故障诊断模型研究[ D].湘潭:湘潭大学, 2021.
|