[1] 陈仪坤,步丹璐.农业信息基础设施建设对涉农企业价值的影响——基于“宽带中国”战略的准自然实验[J].农业技术经济,1-19[2024-05-25].
Chen Y K, Bu
D L. Agricultural information infrastructure construction and agricultural enterprises’
values: a quasi-natural experiment based on the “broadband China” strategy[J].
Journal of Agrotechnical Economics, 1-19[2024-05-25].
[2] Ma Y, Feng W, Mao Z, et al. Path planning of
UUV based on HQPSO algorithm with considering the navigation error[J]. Ocean
Engineering, 2022, 244: 110048.
[3] 王杰,经俊森,陈正伟,等.基于Harris和卡尔曼滤波的农业机器人田间稳像算法[J].农业机械学报,2023,54(01):30-36+53.
Wang J, Jing J S, Chen Z W et al. Field
image stabilization algorithm for agricultural robot based on Harris and Kalman
filter[J]. Transactions of the Chinese Society for Agricultural Machinery,
2023,54(01):30-36+53.
[4] Yi H, Wang J, Hu Y, et al. Mechanism
isomorphism identification based on artificial fish swarm algorithm[J].
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, 2021, 235(21): 5421-5433.
[5] Merci A, Anthierens C, Thirion-Moreau N, et
al. A simulator of underwater glider missions for path planning[J]. Ocean
Engineering, 2023, 269: 113514.
[6] [1]常见,任雁.基于改进遗传算法的机器人路径规划[J].组合机床与自动化加工技术,2023,(02):23-27.
Chang J, Ren Y. Robot Path planning based
on improved genetic algorithm[J]. Modular Machine Tool & Automatic
Manufacturing Technique, 2023,(02):23-27.
[7] 高明,唐洪,等.机器人集群路径规划技术研究现状[J].国防科技大学学报,2021,43(01):127-138.
Gao M, Tang H, et al. Survey of path
planning technologies for robots swarm[J]. Journal of National University of
Defense Technology, 2021,43(01):127-138.
[8] Tian Q, Wang T, Wang Y, et al. A two-level
optimization algorithm for path planning of bionic robotic fish in the
three-dimensional environment with ocean currents and moving obstacles[J].
Ocean Engineering, 2022, 266: 112829.
[9] Zhang Y, Chen P, Chen L, et al. A path
planning method for the autonomous ship in restricted bridge area based on anisotropic
fast marching algorithm[J]. Ocean Engineering, 2023, 269: 113546.
[10] Xue H. A quasi-reflection based SC-PSO for
ship path planning with grounding avoidance[J]. Ocean engineering, 2022, 247:
110772.
[11] Yan Z, Zhang J, Zeng J, et al. Three-dimensional
path planning for autonomous underwater vehicles based on a whale optimization
algorithm[J]. Ocean engineering, 2022, 250: 111070.
[12] Zhang L, Zhang Y, Li Y. Mobile robot path
planning based on improved localized particle swarm optimization[J]. IEEE
Sensors Journal, 2020, 21(5): 6962-6972.
[13] Zhao L, Wang F, Bai Y. Route planning for
autonomous vessels based on improved artificial fish swarm algorithm[J]. Ships
and Offshore Structures, 2023, 18(6): 897-906.
[14] Li S, Li W, Wang Z, et al. Research and
implementation of parallel artificial fish swarm algorithm based on ternary
optical computer[J]. Mobile Networks and Applications, 2022, 27(4): 1397-1407.
[15] 金秀章,于静,刘岳.基于人工鱼群-径向基神经网络的NO_x预测模型[J].动力工程学报,2021,41(07):551-557.
Jin X Z, Yu J, Liu Y. NOx prediction model based on artificial fish swarm-radical basis function neural
network[J]. Journal of Chinese Society of Power Engineering,
2021,41(07):551-557.
[16] 靳荔成,刘一萱,白瑞峰,等.面向校园多机器人协同巡查的路径规划虚拟仿真实验设计[J].实验技术与管理,2023,40(03):93-99.
Jin L C, Liu Y X, Bai R F, et al. Design
of virtual simulation experiment of path planning for multi-robot cooperative
patrol in campus[J]. Experimental Technology and Management, 2023, 40(3):
93-99.
[17] 毕桂.染色体重组鱼群算法的机器人导航路径规划[J].机械设计与制造,2021(6):197-201.
Bi G. Robot navigation path planning
based on chromosome recombination fish swarm algorithm[J]. Machinery Design
& Manufacture, 2021(6): 197-201.
[18] Zhao L, Bai Y, Wang F, et al. Path planning
for autonomous surface vessels based on improved artificial fish swarm algorithm:
a further study[J]. Ships and Offshore Structures, 2023, 18(9): 1325-1337.
[19] Lyridis D V. An improved ant colony
optimization algorithm for unmanned surface vehicle local path planning with
multi-modality constraints[J]. Ocean Engineering, 2021, 241: 109890.
[20] Xi L, Zhang F. An adaptive
artificial-fish-swarm-inspired fuzzy C-means algorithm[J]. Neural Computing and
Applications, 2020, 32(22): 16891-16899.
|